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Outline

e Context

e Deep-Learning models used for problems in climate modeling
* CNNs, RNNs, STNs, generative models

e Examples of Deep Learning for Climate Applications
e Event detection
e Spatio-temporal modeling

* NN as dynamic models
e Links between NNs and ODEs



Context

e Brief review of the literature on Deep learning applications to
climate modeling

* Literature
* Increasing number of application papers from both the « climate »
and CS communities
e e.g. 4 papers + 2 invited talks at « Climate Informatics 2017 »
* Most are still preliminary work:
* basic applications of Deep Learning methods
e or « toy » problems

e Several platforms available (Google-tensorFlow, Facebook PyTorch,
etc) make Deep Learning experimentation easy

e Some innovative papers from the Machine Learning community
* Application validity?



Context

 Mainly found two application topics

e Event detection
* Eddy detection + following, Extreme Weather detection
* Models: CNN, convolution-deconvolution CNNs

e Spatio temporal modeling for different phenomena
» SST, Precipitation Nowcasting, etc

 Models: RNN extensions, Generative Models, Physically inspired
models

e Type of data used in these papers
e Satellite data
e Reanalysis data
e Simulations e.g. from atmosphere models



Deep-Learning models used for
oroblems in climate modeling
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Convolutional nets

e ConvNet architecture (Y. LeCun since 1988)

 Deployed e.g. at Bell Labs in 1989-90
e Character recognition
e Convolution: non linear embedding in high dimension
* Pooling: average, max Layer 3
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Convolutions and Pooling

e Convolution, stride 1, from 3x3 image to 2x2 image, 2x2 filter

=
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e Pooling
e Max pooling, stride 2
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Transpose convolution

e This is the reverse operation —
* From 2x2 image to 3x3 image, 2x2 filter, Stride 1 with Padding

2 = =
W3 | Wy \% X2 | X2
Filter X4 | X5 | Xg

0 Y3 | Ya |0
0 0 0 0

* Unpooling
* Reverse pooling operation
* Different solutions
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3&-layer residual

g

Convolutional Nets
ResNet (He et al. 2016)

* Building block -
* |dentity probably helps propagating gradie| :
e F(x)is called the residual “’*Ghi laye

152 ResNet 1st place ILSVRC classification competition

Other ResNets 1st place ImageNet detection, 1st place ImageNet localization, MS-
COCO detection and segmentation

Fi(x)

X
weight hv‘-‘-”/ identity
F(x) +x %)*
' relu Fig. from (He 2016)

e General architecture

* Mainly 3x3 convolutional filters

oy od
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Spatial tranformer networks

(Jaderberg 2015)

e Proposed initially as a module for learning image transformations
e Such as: cropping, rotations, etc

e Differentiable module that allows image warping
e This is the interesting mechanism for us
* Adaptations are used e.g. in de Bezenac 2018: implements advection

mechanism

* |llustration (Fig. from (Jaderberg 2015))
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F'Lgl,]n_‘ I: The result of using a spatial transformer as the
first layer of a fully-connected network trained for distorted
MNIST digit classification. (a) The input to the spatial trans-
former network is an image of an MNIST digit that is dis-
torted with random translation, scale, rotation, and clutter. (b
The localisation network of the spatial transformer predicts a
transformation o apply to the inputl image. () The outpul
of the spatial transformer, after applying the transformation.
{d) The classification prediction produced by the subsequent
fullv-connected network on the output of the spatial trans-
former. The spatial transformer network (a CNN including a
spatial transformer module) is trained end-to-end with only
class labels — no knowledge of the groundiruth trnsforma-

tions is given (o the system
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Spatial tranformer networks
(Jaderberg 2015)

e STN implements a pointwise image transformation
e All the parameters are learned

* 2 main components
e Sampling mechanism
* For each target point (x}, y}), sample a source point (x7,v;)

* Ty is alearned transformation, with parameters 8 = F(Ig), F is a NN,
I5 is the Source Image
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Oy =Toxiyy) | @

t .t
xXi, Vi)
S S ( 121
(x7,y7) /
e
. /
Source image I Target image I+
2018-05-25 Deep Learning for Climate 11




Spatial tranformer networks
(Jaderberg 2015)

* 2 main components

* Transformation (warping mechanism)

* For each sampled source point (x;,y;), compute the value of the
corresponding target point (xf, yf)
 Apply a kernel transformation centered on the source point (x;,y;)

Ir(x},¥) = Teyers s k(x — x7,y — yi)
I(x,y) pixel intensity at (x, y)

/

Kernel transformation __— ®

/ (x99
i

Source image I Target image I+
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Recurrent neural networks - RNNs

e Basic architecture: state space model

memory

 Up to the 90s RNN were of no practical use, too difficult to train
 Mid 2000s successful attempts to implement RNN
e e.g. A. Graves for speech and handwriting recognition
 Today
 RNNs SOTA for a variety of applications e.g., speech decoding, translation,
language generation, etc
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Google Neural Machine Translation System

(Wu et al 2016)
https://research.googleblog.com/2016/09/a-neural-network-for-machine.html

e General Architecture

Encoder: 8 stacked LSTM RNN
+ residual connections

Encoger LSTMy

GPUA GPUa

Attention

i

mechanism ;

| layers 3 ~ i
GrU3 ] =

GPU2 f GPUI '

- Atsention . -

i GPU2 |

GPUL | GPU1 :

5= —» y, —* -+ __i Figure from Wu et al. 2016

o, o

e NMT seminal papers: Cho et al. 2014, Sutskever et al. 2014
e Comparison and evaluation of NMT RNNs options (Fritz et al. 2017)
e 250 k-hours GPU -> a 25[()) kSeggRer !
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Generative Adversarial Networks (Goodfellows 2014)
Generative models intuition

* Provided a sufficiently powerful model F(z)

* |t should be possible to learn complex mappings from latent space
to real world spaces such as: 4

F(z)

L, e

o .
Latent.z space

F(z)

A

o\
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Generative Adversarial Networks (Goodfellows 2014)
Generative models intuition

e Given a probability distribution on the latent space p,(z), G
defines a probability distribution on the observation space p,.(X)

LN p'z (Z)

Latent.z space

G(z)
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Generative Adversarial Networks (Goodfellows 2014)
Generative models intuition

* Generative latent variable model

0 \
* Given a simple distribution p(z), e.g z~N'(0,1), use a NN to learn
a possibly complex mapping pg(x|z) = G(2)

A G(2) X

NN - >

2018-05-25 Deep Learning for Climate 17



GANSs (Goodfellovv, 2014)

e Principle
* A generative network generates data after sampling from a latent
distribution

e A discriminant network tells if the data comes from the generative
network or from real samples

 The two networks are trained together

e The generative network tries to fool the discriminator, while the
discriminator tries to distinguish between true and artificially
generated data

* Formulated as a MinMax game
 Hope: the Discriminator will force the Generator to be clever

e Applications
e Data generation, Semi-supervised learning, super resolution, ...



GANS

 Discriminator is presented alternatively with true (x) and fake (X)
data

O Real data sampling
X
X~Pdata (x)
G2 e
Discriminator .
Network 1 If{
D Oifx
Latent variable sampling (%)
z~p(2) p(x|z) 2

Generator Network i)
% G(Z) _____ ) .

Generated data

D and G are typically MLPs
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GAN Training

e Algorithm alternates between optimizing D and G
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GANs examples Deep Convolutional GANS (Rradford 2015) -

Image generation

 LSUN bedrooms dataset - over 3 million training examples

Figure 3: Generated bedrooms after five epochs of training. There appears to be evidence of visual
under-fitting via repeated noise textures across multiple samples such as the base boards of some of
the beds. Fig. Radford 2015

2018-05-25 Deep Learning for Climate
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Gan example

MULTI-VIEW DATA GENERATION WITHOUT VIEW

SUPERVISION (Chen 2018)
e Objective

* Generate images by disantangling content and view
e Eg. Content 1 person, View: position, illumination, etc

* 2 |latent spaces: view and content
e Generate image pairs: same item with 2 different views
e Learn to discriminate between generated and real pairs
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Adversarial training: video sequence prediction

[ ]
Video prediction, Predicting video future
(Mathieu et al. 2016) segmentations (Luc et al. 2017 <<
LIK Grenoble)
Ground truth f5 result
Adversarial result Adversanal+GDL result

Figure 1: Our models learn semantic-level scene dynam-
ics to predict semantic segmentations of unobserved future

2018-05-25 Deep Learning for Climate frames given several past frames. .



Examples of
applications
Domain

2018-05-25
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in the Climate
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Event Detection

Eddy detection
Extreme weather event detection

2018-05-25 Deep Learning for Climate
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Eddy Identification and Tracking
(Leuensat 2017)

e Objective : pixelwise eddy classification
e 3 classes: anticyclonic, cyclonic, no Eddy

* Data
SSH maps southwest Atlantic (AVISO-SSH)

Labeled by PET14 algorithm (Mason 2014)
* Provides eddy center + speed and contour

* Transformed into segmentation maps using the speed contour
coordinates

* Speed contour with the highest mean geostrophic rotational current
* Pixels inside each contour is labeled A-eddy, C-eddy, No-eddy

15 years, 1 map/ day, 14 1st years used for training, last year for
testing

Input = 128x128 patch randomly sampled from the SSH map
e 5k training examples
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Eddy Identification and Tracking
(Leuensat 2017)

55H patch Ground Truth segmentation

Patch
sampling

Fig. 2: Example of a SSH-Segmentation training couple,
anticyclonic (green), cyclonic (brown), non eddy (blue)

Fig. I: A snapshot of a SSH map from the Southern Atlantic
Ocean with the detected eddies by PET14 algorithm, red
shapes represent anticyclonic eddies while green shapes are

cyclonic eddies Fig. from (Lguensat 2017)
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Eddy Identification and Tracking
(Leuensat 2017)

e Model

e Convolution-Deconvolution architecture

Inspired from CNN for biomedical image segmentation

e Task: classification

* Training criterion
* Cross Entropy
e Dice-Loss =1 — mean-softDiceCoef (better reflects segmentation...)

2018-05-25

2% piti
X PitY; t
P: predicted output (matrix), T: Target output (matrix)
e T:one hot encoding (3 D) for each position, P: also 3 D for each
position (p; € [0,1])
p;predicted probability, t; = 1 for correct label, 0 otherwise
mean-softDiceCoef: mean for the 3 coefficients

softDiceCoef (P, T) should be 1 for perfect segmentation, 0 for
completely mistaken segmentation

softDiceCoef (P,T) =
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Eddy Identification and Tracking

(Leuensat 2017)
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Fig. 3: EddyNet architecture
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Eddy Identification and Tracking

(Leuensat

2017)

* Experiments
e 2 variants of the network

TABLE [: Metrics calculaied from the results of 50 random sets of 360 SSH paiches from the test dataset, we report the mean
value and put the standard variation between parenthesis.

Antcyclone | Cyclons. | Non bddy
#Param | Epoch ime | Tran loss noe Coef Mean [hce Coel | Global Accaracy
EddvNet 1 ann ~il min Dice Loss 0708 (000D Q677 (ODT) | 0920 (OOT)  ©.772 (D.001) BR.60% (0 109%:)
’ - CCE 0.695 (0003 G651 (Q001) | 0940 (@O01Y D762 (0001 89925 {0.07%)
EddyNe(_S ~1 mn Dice Loss 0604 (0.003) 0665 (MO01) | 0.933 @001 0764 (0.001) BR98% (0.09%)
CCE 0682 (0002 0653 (Q002) | 0930 (001) 0758 (0.001) B9.83% (0LOB%)

* Code available, data available

 Mentionned extensions
e 3D altimetry with 3D CNNs
e SST as additional inputs

2018-05-25
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Extreme Weather Event Detection
(Racah 2017)

e Objective: detection of local events from earth observation

» 4 classes: tropical depressions, tropical cyclones, extra tropical
cyclones, atmospheric rivers

* Data
e Simulated data from CAMS5, a 3 D physical model of the
atmosphere.

e Generates 768x1152 images (8) per day, each with 16 channels !!
(Channels: Surface temp, surface pressure, etc), for 27 years

e Labeled with TECA (Toolkit for Extreme Climate Analysis)

* Produces : event center coordinates in the image, bounding box for
the event, event class

* Prone to errors, + imbalanced event classes

e Method
e Convolution-Deconvolution NN + supervision for predicting event
localization, size and class
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Extreme Weather Event Detection
(Racah 2017)

e Model: 3D Conv — Deconv NN

Np—
\“:}. N
B4 2 RS Th g

CRTRIT o T
‘A o e Biesais o KRN
- 1 Z A S12(2)+ 02436 51 2t 24l s = R t t
ol Al aa . S T | I~ econstruction error
‘ g “ Wy 39 W H m E
! = 3842} A=48=T2 384 2 infixdHx |
1280 2} 19 2288 BA0(2]+ = 12018 1282 efinl 3222 R
s YU
4-lr12-i1:1ﬂ Andu]Zelfl ZuduiZ«iH 16{ 2 1l Toln 1 152
30 oo 00 .
Box Class  Objectiess Fig. from (Racah 2017)
Location Size Probabilities  Probabilites

Input image is split into a Location/ size Object present

Object cl
12x18 grid of 64x64 pixels of object in the grid Y/N ject class
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Extreme Weather Event Detection
(Racah 2017)

e Exemple _
Fig. from (Racah 2017)

Frame

Frame t + 1

Figure 3: Bounding box predictions shown on 2 consecutive (6 hours in between) simulation frames,
for the integrated water vapor column channel. Green = ground truth, Red = high confidence
predictions (confidence above 0.8). 3D supervised model (Left), and semi-supervised (Right).
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Spatio-temporal modeling

Nowcasting

Integration of NN in numerical models

Incorporating prior physical knowledge in Deep learning models
Solving inverse problems with NNs

2018-05-25 Deep Learning for Climate
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Precipitation Nowcasting
(Shi 2015, Shi 2017, Zhang 2017)

Precipitation Nowcasting
e Very short term (some hours) prediction of rainfall intensity in a local
region
Classical methods

 Numerical Weather Prediction (NWP) methods: based on physical
equations of an atmostphere model

e Extrapolation based methods using radar data

e Optical flow based methods inspired from vision
e Does not fully exploit available data (Shi 2015)

Objective
e Learning from spatio temporal series of radar measures
e k-step prediction
* Endto end learning
* Data
* Local radar maps
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Precipitation Nowcasting
(Shi 2015)

e Model

e Extension of LSTM by incorporating explicit spatial dependencies
* ConvLSTMs
* |nspired from early video prediction models
* Analogy with the video prediction tasks but on dense images

* Note: several recent papers for video prediction with NN
(without optical Flow)

e convolutions both for input to state and state to state connections

Figure 3: Encoding-forecasting ConvLSTM network for precipitation nowcasting
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Precipitation Nowcasting
(Shi 2015)

* Data
¢ Radar reflectivity maps from 97 rainy days in Hong Kong
e 1 radar map every 6 mn, 240 frames per day
e Small dataset
¢ Radar map preprocessed into 100x100 grayscale « image» + smoothing
e Sequences = 20 successive frames, 5 as input, 15 as prediction

*  Model
e 2 layers ConvLSTM
* Training criterion: Cross-Entropy (rain/ no rain ????) or MSE + thresholding ?

e Evaluation
e Several measures
e MSE is measured on the predicted values (regression)

*  The other measures require binary decisions: rain vs no rain, the preicted values are converted to 0/1 using a threshold of
0.5 mm/h rainfall rate

¢ Rover is an optical flow based method

Table 2: Comparison of the average scores of different models over 15 prediction steps.

[Model [ Rainfal.MSE | CSI_| FAR | POD [ Conelation |
Com LS TV 3x3)-3x3-63-3x 363 T.420 0577 [ 0.195 | 0.600 | 0.008
Roverl 1.712 0.516 | 0.308 | 0.636 |  0.843
Rover2 1.684 0522 | 0301 | 0.642 | 0.850
Rover3 1.685 0,522 | 0301 | 0.642 | 0.849
FC-LSTM-2000-2000 1.865 0.286 | 0335 | 0351 0774

* Lessons
e State to state convolutions are essential for handling spatio-temporal dependencies
e Better than ROVER (sota Optical Flow based method) and Full LSTM
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Precipitation Nowcasting
(Shi 2017)

e Extension of the ConvLSTM work
* Based on GRUs

e Main ideas
* Use convolution GRUs instead of fully connected GRUs: ConvGRU

* The spatial dependency structure between states should be context
dependent and not fixed like in ConvLSTMs

* They consider a spatial context
e Basic unit is called TrajGRU

e New and larger dataset

 New evaluation metrics (weighted MSE)

2018-05-25 Deep Learning for Climate
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Precipitation Nowcasting
(Shi 2017)

Encader Forecaster
[ A > ANN |—> Ann |  ANN |
¥ ¥
[ Downsample | [ Downsampie | [ upsample | [Llpe-:'mb
[ an = mwn —{ Amnw > A

h.G LG Is Is

Figure 1: Example of the encoding-lorecasting structure used
in the paper. In the figure, we use three RNNs to predict two
future frames f;;‘ f4 aiven the two input frames {4, f2. The spatial
coordinates G are concatenated to the input frame (o ensure the
network knows the observations are from different locations. The
RNNs can be cither ConwGERL or TrajGRU. Zeros are fed as input
to the RNN if the input link is missing.

Excaicai
X, X A X

(a) For convolutional RNN, the recurrent
connections are fixed over time.
Hy Hy

Ma Hy
1 1 1 }
X, E'S X, X,

{b) For trajectory KNN, the recurrent con-
nections are dynamically determined.

Figure 2: Comparison of the connection
structures of convolutional RNN and tra-
jectory RNN. Links with the same color
share the same transition weighis. (Besi
viewed in color)

e Selection of neighborhood at time t (Warping mechanism)
* Forcell (i,j) in H; select neighborhood cells at H;_4

* Function y(X,, H;_;) generates a bilinear mapping which is then used

to select pointsin Hy_4

2018-05-25
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Precipitation Nowcasting
(Shi 2017)

e Dataset: HKO-7
e Echo radar data from 2009 to 2015 in Hong Kong
* 1 radar map every 6 mn, 240 frames per day
* Resolution 480x480 pixels, altitude 2 km, cover 512x512 km in Hong Kong
» Radar images are transformed to (0, 255) pixel values + filtering
e Rainy days: 812 days for training, 50 for validation, 131 for test
. Prcladiction: radar reflectivity values are converted to rainfall intensity
values

e Model
e 3 layer Encoding — Forecasting model

* Training criterion: weighted MSE (higher weights for heavy rainfall —
compensates for data imbalance — see next slide)

e Evaluation
e MSE and weighted MSE (regression)
» Different measures requiring a binary decision: rain or no rain
e Evaluation is performed at different threshold values 0.5, 5, 10, 30
* Predicted pixel values are converted to 0/1 values for each threshold
e Scores are computed for each threshold
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Precipitation Nowcasting

(Shi 2017)

e Rain statistics (dataset)

e Performance comparison

Table 2: Ran rate statistics in the HEKO-T benchmark.

Fain Bate (mm/h)

Proportion (%)

Rainfall Level

=
S bl S
M

g
IATATAIAIAL

T

HH oA H N

< (L5
< 2
< 5
= 10
< 40

90,25
4.38
246
1.35
1.14
042

Mo/ Hardly noticeable
Light

Light 1o moderate
Maoderate

Moderate 1o heavy
Rainstonm warning

Table 3: HKO-T7 benchmark result. We mark the best result within a specific setting with bold Face and the
second best result by underlining. Each cell contains the mean score of the 20 predicted frames. In the online
setting, all algorithms have vsed the online learning strateey described in the paper. “1" means that the score is
higher the betier while *)" means that the score is lower the better. *r = 7" means the skill score at the rmm/h
rainfall threshold. For 21 CNN, 3D CNN, ConvGEL and TrajGRU models, we train the models with three
different random seeds and report the mean scores,

B-MSE | B-MAE |

00193 15374 28042
00762 11651 23437
00576 10945 22857
01885 73R 180491
02034 7200 17503
00160 9087 19642
02893 5081 15000

02990 58ln 14675

0.2162 654 17071
0.2220 G650 16540
0.2981 5T 14772

Algocihns C3l 1 H35 1
r=0b 22 +258 210 230 205 r22 +25 r210 r2>30
Ofiflme Setling
Last Frame 0.4022 03266 02400 01574 0062 05207 04531 ISR 02812
ROVER + Lincar 04762 04089 03151 02146 01067 (L6038 05473 04516 03300
ROVER & Mon-lingar 04653 04074 03226 02 00931 (1. 3806 05436 04300 O33R
IDCNN 05095 04396 0406 02362 01093 (L6366 05808 D851 (L3600
IDCHN 05109 04411 0315 04N 01185 06334 05825 04862 03734
ConvGRU-nohal 0.5476 n4661 03326 02138 noTiz (L6756 06004 04081 (U32RG
ConvGRU 05489 04731 03720 02789 01778 0aT01 O6ld 05163 04159
TrajGRL! 5528 W4T 0TEl LIRAE N B LaT3 fal2e 5192 (LA20T
OUnline Seming
IDCHN 05112 04363 03364 02435 01263 06365 05756 0A4THD  0L3T744
ADCNN 05106 04344 iS04 01299 LGNS 05736  (4T66  (LATIZ
ConvGRU 05511 04737 03742 02843 01837 06712 06105 05183 04236
TrajGRL! 0.5563 WATIR  O3R0R 02014 01933 6Tl falad L5253 (LAMR

o3 5589 14465
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Precipitation Nowcasting
(Zhang 2017)

 Number of preliminary analyses, e.g. (Zhang 2017)
 Nowcasting based on
e 3 D Radar maps — multiple altitudes

e Reanalysis data from VDRAS (NCAR US)
e (Classification: rain/ no rain

e Vertical velocity and buoyancy of an air parcel (also 3 D data)

e Objective: nowcasting, storm initiation and growth (*)
e Argument: radar data not sufficient for (*)

— .'l_
ﬁ_.‘::“\ 120 1R 18 20E1E°18 BI@G*D 160@0*9 160@E5" 5 1@5*S 1@1'1  output

.......

= [———=1
. I E =
E |- e & || A b o i e = 1 s SR -
1 . H T H s ! [il | SRS __:!l_-_i_i | Y \_—._..'k.\_."
— =, R | | . | J - I 5 L%
| R oo ARG Lo o= - ?
== == Convolutlon Convelution Convalution Convelution Comvalution Pocling Softmax
- = kernelize$ kernelsize:h kernelsie:5 kernedsize:S kerredkiza:l WRrnEEie S
strige:1 siride:2 stride;1 striced stricke:] siride:]
— pad2 pad:2 a2 pad:2 pa:1 EYIETEAR

(w.dw byve.dbye R.dR)

Figure 1: Network Architecture of multi-channel 3D-5CX
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Integration of NN in numerical models
(Brajard 2018)

e Can Machine Learning (ML) techniques be used in weather and
climate models to replace physical forcings

e Example
2 | 42
Ou = +(f+()v- E)J.{“ -2'_ "+ g .h)+10, Flow-
2D shallow w2 + 2 j dependent
water model | 5, — —(f+O)u — U”{T +g*.h) + 6, forcing
ohh = —0u(u(H + h))— 0,(v(H + h))

where ( is the vorticity.
0, and 0, account for the effects of forcing, dissipation and diffusion.

More generally, the forcing terms mimic unresolved processes like turbulence,
precipitation, radiation, clouds, friction, etc. Typically computed via complicated
physical parameterizations with empirical parameters

e Question: can 8(t) be represented by a neural network F(x(t))?
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Integration of NN in numerical models
(Brajard 2018)

* Proof of concept
e Data generated by a fully specified shallow water model
e i.e.the Os are modeled by a physical model
* Train a MLP to learn the 8s, supervised learning

Conv. layer Conv. layer Output
Input layer 3Ix3 1 x1 Jisciay
32 filters 16 filters Y

A \

U —

u: speed
h: heigth of mixture level
T, surface wind

"y w F s d i
% + .I .K. \ + =|

Tx —

e N
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Integration of NN in numerical models
(Brajard 2018)

e The neural network simulation diverges after a few hundred days
(kinetic and potential energy explode)

Forced by Neural
True model (h') MNetwork (nn) (h')

i iam 5
w ]
« s 1
x | 3
.58 4
- ;—‘I =
1% 158

e Solution: add a mass conservation constraint (hmean = constant)
to the neural network training algorithm (physics-informed

machine learning) e mode i) ;:ﬁ:’;g:ﬁ’;?'
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Incorporating prior knowledge
Deep Learning for Physical Processes: Incorporating Prior

Scientific Knowledge, (de Bezenac 2018)

e Motivations

e DL SOTA for perception problems
e Natural physical phenomenon are much more complex than
problems handled by Deep Learning today

e Can we incorporate prior knowledge from physics in statistical models
?

e Challenge
* Interaction between the Physical and the Statistical paradigms

 |llustration: Sea Surface Temperature Prediction

2018-05-25 Deep Learning for Climate 46



Incorporating prior knowledge - (de Bezenac 2018)

Physical model for fluid transport
Advection — Diffusion equation

e Describes transport of I through advection and diffusion

it C— R

a—+ (W \7)] = DVZ

e [:quantity of interest (Temperature Image)

A : e -
s W= A—: motion vector, D diffusion coefficient

* There exists a closed form solution
o Iine(x) = (kxI)(x —w(x))

 If we knew the motion vector w and the diffusion coefficient D we could
calculate I,z (x) from I;
e wand D unknown
e ->Llearnwand D
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Incorporating prior knowledge - (de Bezenac 2018)

Prediction Model
Objective: predict I}, from past I, I, _+, ...

e 2 components: Convolution- Deconvolution NN for
estimating motion vector w;

Warping Scheme
Implements discretized
Advection-Diffusion

lution
ModelA| Supervision |
Past Images j:t+l t+1 Target image
Tip—1:1

 Endto End learning using only I;, 4 supervision

e Stochastic gradient optimization
e Performanceon-par with SOTA assimilation models
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Solving inverse problems with NNs
(de Bezenac et al. ongoing work)

e Objective

e Given noisy observed data, and possibly some priors how to
generate an approximation of the underlying true data ?

e Priors may come from a physical model

e Applications
* Improve physical model predictions using observed data
e Inpainting for physical data

e Method

e Based on an extension of ambiant GANs (Bora et al. 2018)

2018-05-25 Deep Learning for Climate
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Solving inverse problems with NNs
(de Bezenac et al. ongoing work)

e Ambiant GANs (Bora et al. 2018)

* Train generative models from incomplete or noisy samples
e Hyp: the noise/ measurement process is known

e Works for some classes of measurements (theoretical results for
kernels + noise distributions — empirical results for large class of
processes)

e The NN is trained to distinguish a real measurement from a
simulated measurement of a generated image

xe

_ Fig. from Bora et al. 2018

Figure 1: AmbientGAN training. The output of the generator is passed through a simulated random
measurement function fg. The discriminator must decide if a measurement is real or generated.
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Solving inverse problems with NNs
(de Bezenac et al. ongoing work)

e AmbiantGAN example

Fig. from Bora et al. 2018

“igure 2: (Lefi) Samples of lossy measurements used for training. Samples produced by (middle ) a
yaseline that trains from mpainted images, and (right) our model.
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Solving inverse problems with NNs
(de Bezenac et al. ongoing work)

e Conditional ambiant GANs
e Objective

* Given a stochastic measurement process model Fy learn X so that Yis
indistinguishable from Y

Generator
network

Discriminator

Fy
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Solving inverse problems with NNs
(de Bezenac et al. ongoing work)

e Preliminary illustrations
e Data from Shallow Water model

o Left: 90% pixels eliminated (0) + noise N(0,1) on remaining pixels
* Right: « clouds »

True State
Observation True State
Observation
GAN model
GAN model
BLUE
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NN as Dynamical Systems
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NN as Dynamical Systems

e Recent papers on the interpretation of NNs as discretization
schemes for differential equations

e Links between data driven approaches (NNs) and physical models
used in climate modeling

* Allows learning efficient discretization schemes for unknown ODE
e Motivates the alternative design of NN modules/ architectures
* Not yet a clear application to climate pb.
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Resnet as a discretization scheme for ODEs

e ODE
ax
+ == F(X(1),0(1)), X(0) = X, (1)
* Resnet module
* Xev1 = X + G(Xe, 0¢) (2)
* Xt+1 = Xt + hF(Xt; et)l h € [011]
o TS = F(X,, 6,)
* Forward Euler Scheme for the ODE
e htime step
* Note: this type of additive structure (2) is also present in LSTM and GRU
units
e Resnet

* |Input X;, output X;, 4

e Multiple Resnet modules implement a multi-step discretization scheme
for the ODE

© X(t1) = X(to) + hF (X (to), 6¢,)
© X(t;) = X(t1) + hF(X(t1),6¢,), -
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Resnet as a discretization scheme for ODEs

e This suggests that alternative discretization schemes will correspond to
alternative Resnet like NN models

e Backward Euler, Runge-Kutta, linear multi-step ...
e Example (Lu 2018) linear multi-step discretization scheme
* Xey1 = (L —k)Xe+k X1 + F(Xt,0;)

2x fewer parameters
B -

Test Accuracy()

Fig. (Lu 2018) R

Figure 2: LM-architecture is an efficient structure that enables ResNet o achieve same level of

o App“cations accuracy with only half of the parameters on CIFAR10
e Classification (a la ResNet)
 Modeling dynamical systems
e (Fablet 2017) Runge Kutta for dynamical systems, Toy problems
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