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About my job at Quantmetry

Leading the R&D programs on data science and Al tools

@ Statistics, (deep) machine learning, decision theory, optimization, epistemology
(for Al's interpretability)...

@ Technological works on data architecture, engineering, loT treatments

» Partnerships
Al and health : diagnosis acceleration
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Al (well, just machine learning) and climate at Quantmetry

Joint work on climatic imputation of tropical storms with Berkeley Lab (NERSC) (Mr
Prahbat, Michael Wehner) and Ouranos (Alexis Hannart)

Predicted Probability over Time

Average model predictin rain ety

Observations

* proba > 0.5 : the classifier
predicts that the storm
happened after year 2000

Average madelprecicton over tme (est sel * There is definitely some
signal detected by the
algorithm

* There is probably room for
improvement using hyper
optimisation
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About climate models

Based on documents from Jean-Louis Dufresne (LMD, IPSL)

General circulation models (GCMs)
@ Dynamical core : discretized version of the equations of fluid mechanics

@ Involve terms other than fluid mechanics and unresolved scales = sub-grid models

Downscaling (ex : in T°)
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Evolution of climate models
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A family of climate models

IPSL-CMS5 Earth System Model platform IPSL-CMS Earth System Model platform
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Simulation (multi)physically-based models

( Boundary conditions
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insolation
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A common view (and underlying issues) for the forecasting of dynamical systems

Simulations are based on some variations of initial conditions (sensitive dependence)

The range of simulations is amplified by the chaotic nature of evolution equations of the
atmosphere, and errors introduced because of model imperfections

Simulation produce members
Of which nature ? How dealing with them ?

Common use of ensemble forecasting approaches, assimilated to probabilistic forecasts
(Monte Carlo-like)

Common use of averages, "standard deviations" as measures of spread, dispersion...
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Complex simulation models in general

Models can be complex because :
°
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Complex simulation models in general

Models can be complex because :
@ they represent complex phenomena at various scales
@ they are hard to understand (black or grey-box syndrome)
@ their input are hard to calibrate
@ they are very time-consuming to explore by simulation means

Examples :
@ Energy systems as nuclear reactors (CATHARE-type models)
@ Ecosystemic models (incorporating trophic relations, human forcings, etc.)
@ Socio-economic models

= they are often characterized by a lack of understanding and justification about :
@ the nature and features of the uncertainties that affect them

@ the most suitable formal tools (e.g., random sequences) for representing such
uncertainty

© the most suitable computing tools (e.g., quasi-random generators) in the present
state of techniques
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What about Atrtificial Intelligence (Al)?

Connectionist Al importance of corporality for the Symbolic Al
Inductive logic,correlations acquisition of intelligent behavlcl:\r Deductive logic, correlations
Machine
learning engine
(and —§
—
deep) e.g., neural
networks
Geni
algorithms
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What about Atrtificial Intelligence (Al)?

Symbolic Al Machine-learning based (statistical) Al
Knowiedge
Non-expert .+ TTTTiTrrmirmmmmmmmmmmmmmmmeness . from an expert
user 5' Expert System ':_ e B
Query - ; Y —
5 ‘ [ nference \ Knowledge
E Engine ), Base
Adviteé 3 ‘ g ‘3

| do not know where this image come from but | find it nice! (sorry for non-citing the anonymous author)
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A possible when talking about Al and climate (certainly not the only one)

Reducing connectionist Al tools to statistical approaches to mimic physics (computer
analytics)

@ Based on physically-based simulation results, producing simpler meta-models

@ Relevance mostly based for neural networks on the universal approximation
property
@ Correlation structure constrained to respect physical properties

@ Same ideas (basically) than regression, interpolation...
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A possible when talking about Al and climate (certainly not the only one)

Reducing connectionist Al tools to statistical approaches to mimic physics (computer
analytics)

@ Based on physically-based simulation results, producing simpler meta-models

@ Relevance mostly based for neural networks on the universal approximation
property
@ Correlation structure constrained to respect physical properties

@ Same ideas (basically) than regression, interpolation...

Making new knowledge emerging at unresolved scales for physics

@ E.g., merging real data at lowest scale and simulated outputs for downscaling ?

IA et Climat 13 / 60



Dealing with uncertainties in complex models

Beyond the climatic framework, Al tools are more and more studied for working in
interaction with causal (physically-based) complex models

Better understanding and modeling the uncertainties that affect these models and their
outputs should be a prerequisite for

Effects on trust in Al, safety / reliability questionings, etc.
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An instance of model description

Conséquences physiques

Y=£(X.2)

Mesures
Y*=M(Y)

Modéle théorique de X

par inversion de £*

A

Assimilation de données

NO OK

Distance

OK

\,

Ajout d'information sur X

Validation du code
pour un domaine de X
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Notions of uncertainty

The treatment of uncertainties in computer models is characterized by a lack of clear
definitions

o
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The treatment of uncertainties in computer models is characterized by a lack of clear
definitions

@ '"Aleatoric uncertainty (natural,stochastic...) is due to the randomness or natural
variability of a physical phenomenon (the values are accurate but different due to
natural variations). Generally related to measurable quantities / objective
knowledge and considered irreducible since it is inherent in the natural variability
of physical phenomena" [Winkler 1996] .
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Notions of uncertainty

The treatment of uncertainties in computer models is characterized by a lack of clear
definitions

@ '"Aleatoric uncertainty (natural,stochastic...) is due to the randomness or natural
variability of a physical phenomenon (the values are accurate but different due to
natural variations). Generally related to measurable quantities / objective
knowledge and considered irreducible since it is inherent in the natural variability
of physical phenomena" [Winkler 1996] .

@ 'Epistemic uncertainty is due to the imprecise nature of knowledge or linked to a
lack of knowledge. It is generally related to non-measurable quantities, and is
considered reducible [Winkler 1996] in the sense that new knowledge could reduce
or even eliminate this type of uncertainty. It is mainly present in the case of
subjective data based on beliefs (expert opinion) and may be qualitative or
quantitative.[20].
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Notions of uncertainty

Not formal definitions, but qualitative characterization (exhibition of a property)
Semantics used too extensive

Require formalization
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Precisions on epistemic uncertainty

@ parametric uncertainty

e comes from the requirement to estimate parameters from a finite amount of
information (ex : assimilated data)
o traduced by an error between the estimated model ¥’ and the formal model

Z/
@ model uncertainty traduced as an error between the real phenomenon X and the
theoretical model ¥’ ;

@ completness uncertainty

o lack of knowledge of the real exhaustiveness of a model, limited by the
choice of its input parameters, with regard to the real first name

o traduced by an error between ¥ and ¥’ over the circonscription of the model
perimeter through the choice of its parameters

[Error (Oberkampf 2002).] An error in the sense of Oberkampf (2002) is an identifiable
imprecision that is not due to a lack of knowledge. It can be voluntary (e. g.
simplification of a mesh used to accelerate calculations) or unintentional (e. g.
programming error)
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An attempt to recharacterize the epistemic uncertainty as an "engineer"

In the concrete problem of numerical modelling of a phenomenon of a mechanistic
nature, the addition of knowledge is expressed in practice by :

o
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An attempt to recharacterize the epistemic uncertainty as an "engineer"

In the concrete problem of numerical modelling of a phenomenon of a mechanistic
nature, the addition of knowledge is expressed in practice by :

@ a refinement in the execution of the program implementing the theoretical model
(e.g., downscaling) ;

@ a refinement in the algorithmic description of the phenomenon (for example, using
additional structural parameters and equations).
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Expert judgment
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Expert judgment

Another key sub-theme in epistemic uncertainty is the use of expert judgment for

assessing uncertain information when there is a lack of experimental data (or other
objective source of information)

IA et Climat 20 / 60



Expert judgment

Another key sub-theme in epistemic uncertainty is the use of expert judgment for
assessing uncertain information when there is a lack of experimental data (or other
objective source of information)

This lesson is driven by the questions :

Why and how stochastic modeling can be a relevant tool for using expert judgment, and
more generally dealing with epistemic uncertainty ?
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Expert judgment

Beyond scientific computing and uncertainty propagation, expert judgment has a
foremost role in decision-making
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Expert judgment

Beyond scientific computing and uncertainty propagation, expert judgment has a
foremost role in decision-making

@ guiding designs of experiments, ordering scientific results [3, 36, 19]

@ enriching economic [18] and actuarial studies [33] on the impact of financial risks

@ being determining in legal arbitration, public policies [22] or environmental
governance [21, 7]

Its influence on technological, economic, societal or personal choices when elaborating

strategies of gain-winning is explored by many epistemological and psychological authors
[11, 19, 10]
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What is an expert ?

An infinite number of conceptions
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What is an expert ?

An infinite number of conceptions

Among them, two main kinds of experts for [36] :
@ those who expertise is a function of what they do (performative expertise)

@ those who expertise is a function of what they know (epistemic expertise)

An usual view, with the ability of explaining and transmitting. Furthermore, acccording
to Luntley [19] :

| argue that what differentiates the epistemic standpoint of experts is not what or how
they know [...], but their capacity for learning
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What is an expert ?

Today's question is in fact "what is formally an expert 7"

We should rather talk about “expert systems delivering new knowledge"

Typically :
@ implicit cognitive systems

@ humans
o some artificial intelligences

@ explicit causal systems

@ phenomenological models and their numerical implementation (simulation
models)

Capacity for proving expertness < capacity of predicting adequately

Capacity for learning < capacity of inferring (processing) coherently when new data
arrive
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What we typically want to do from an expert system response ?

Eliciting = assessing her/his/its relevant epistemic information on the behavior of a
magnitude of interest X € x

elicio, eliciere : to extract from, to drawout (ex aliquo verbum elicere)
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What we typically want to do from an expert system response ?

Eliciting = assessing her/his/its relevant epistemic information on the behavior of a
magnitude of interest X € x

elicio, eliciere : to extract from, to drawout (ex aliquo verbum elicere)

Immediate difficulties
@ bias
@ impact of subjectivity in the delivery process
@ lack of correct or sharp information
o ..

resulting in epistemic uncertainty

Our work : formalizing the most adapted measure of uncertainty, highlighting clearly the
subjective and objective parts of the modeling
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Prior information

Prior information = information whose the value of truth is justified by considerations
independent on experiment on focus [24]

other trial results (e.g., on mock-ups)
technical running specification
physical bounds

literature corpus

and of course, human experts

Often incomplete, always uncertain, because

@ of the non-existence of a system allowing a priori if the expertness is complete or
not

@ of the non-existence of a system precise enough to specify that X = x¢ exactly
(except in rare cases)
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Simple questions and non-trivial answers

What means “uncertainty" and especially “epistemic uncertainty" ?
Why probabilities for dealing with uncertainty ?

If we are ok with probabilities, how choosing the probability distributions?

IA et Climat 26 / 60



Simple questions and non-trivial answers

What means "“uncertainty" and especially “epistemic uncertainty" ?
Hard philosophical question! Providing answering attempts here

Why probabilities for dealing with uncertainty ?

If we are ok with probabilities, how choosing the probability distributions?

IA et Climat 26 / 60



Simple questions and non-trivial answers

What means “uncertainty" and especially “epistemic uncertainty" ?
Hard philosophical question! Providing answering attempts here

Why probabilities for dealing with uncertainty ?
Many practical advantages, but how proving they are theoretically relevant ?

If we are ok with probabilities, how choosing the probability distributions ?

IA et Climat 26 / 60



Simple questions and non-trivial answers
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Simple questions and non-trivial answers

What means “uncertainty" and especially “epistemic uncertainty" ?
Hard philosophical question! Providing answering attempts here

Why probabilities for dealing with uncertainty ?
Many practical advantages, but how proving they are theoretically relevant ?

Raises the question of auditability of mathematical procedures = growingly increasing
concern

If we are ok with probabilities, how choosing the probability distributions?
Use the help of important Bayesian prior modeling techniques
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Treating prior information
from implicit cognitive systems
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Formalizing the state of information on X

If we were omniscient, a causal model could be

X = g(2)
where :

@ Zis a hidden property of the experiment
@ g is a model of information production

The value of Z could be explained by another transformation g of another hidden
property 6, etc.

However, there is still a model error between the true values of X and g(Z), since nor g
neither Z are known (completely or not)
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From information to knowledge (and reciprocally)

Hypothesis 1 (epistemological) by Lakatos [17]

@ Information on the world is hidden and partially revealed by a consensual theory (in
the sense of Popper [25] : by mutual decision of protagonists) defining objectivity
[12]

@ Knowledge is “filtered" from information

@ Filtering is performed through the intervention of symbols, or signs, in order to
transmit it or even implement it

IA et Climat 29 / 60



From information to knowledge (and reciprocally)

Hypothesis 1 (epistemological) by Lakatos [17]

@ Information on the world is hidden and partially revealed by a consensual theory (in
the sense of Popper [25] : by mutual decision of protagonists) defining objectivity
[12]

@ Knowledge is “filtered" from information

@ Filtering is performed through the intervention of symbols, or signs, in order to
transmit it or even implement it

v
Hypothesis 2 (arising from neurosciences) [28, 27, 26, 14, 6, 2]

@ Face to situations where uncertain information is mobilized, human reasoning
produces probabilistic inferences

@ Difficulties appear when trying to explicit this inferred knowledge by an
interpretative language = providing usable expertness
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Logics of uncertain information

We don’t know what is the “deconvolution" transforming uncertain knowledge
backwards into uncertain information, following Lakatos’ hypothesis

But we can have ideas about the impact of the addition of uncertain but useful
knowledge in the problem of determining X

It should traduce by the increasing of information on X = inference (updating)
=> this inference should stands on a reasoning principle

= this principle should stand on a logic = set of formal rules
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Logics of uncertain information

We don't know what is the “deconvolution" transforming uncertain knowledge
backwards into uncertain information, following Lakatos’ hypothesis

But we can have ideas about the impact of the addition of uncertain but useful
knowledge in the problem of determining X

Desirable properties [34]

@ Sorting atomic assertions of type X = xo at each addition of information (exclusive
logic)

@ an initial situation (premise) is less informative than a conclusion (updating)
@ Allowing uncertain information

@ not only true or false situations can be sorted (non-boolean logic)
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Logics of uncertain information

Definition [34]

Denote Sx a set of atomic propositions of type X = x;. The set Bx of all possible
compound propositions generated by
X =xi, X=xN\NX=x,
X=x;VX=xj,, X=xi=X=x
and X=xi& X=x

is called a state of information, with Dom(Bx) = logical closure of Sx
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Logics of uncertain information

Definition [34]

Denote Sx a set of atomic propositions of type X = x;. The set Bx of all possible
compound propositions generated by

X =xi, X=xN\NX=x,
X=x;VX=xj,, X=xi=X=x
and X=xi& X=x

is called a state of information, with Dom(Bx) = logical closure of Sx

The state of information Bx summarizes the existing information on a set of
propositions about X

The same logic should guide how Bx evolves : it is growing following a given metric
when information on X is increasing
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Plausibility, consistency and coherence

Definition

Consider any proposition A on X. Given Bx, the plausibility [A|Bx] is a single real
number, upperly bounded by a real (finite or infinite) T
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@ Consistency : Bx is consistent if there is no proposition A for which both
[AIBx] =T and —[A|Bx] =T
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Plausibility, consistency and coherence

Definition

Consider any proposition A on X. Given Bx, the plausibility [A|Bx] is a single real
number, upperly bounded by a real (finite or infinite) T

@ Consistency : Bx is consistent if there is no proposition A for which both
[A‘B)(] =T and —|[A‘Bx] =T
(] Propositional calculus : applicable to any problem domain for which we can formulate useful

propositions

(i) If A=A’ then [A|Bx] < [A|Bx]
(Il) [A‘Bx, Cx, Dx] = [A‘(Bx A Cx), Dx]
(iif)  If Bx consistent and —[A|Bx] < T, then AU Bx is consistent
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Definition

Consider any proposition A on X. Given Bx, the plausibility [A|Bx] is a single real
number, upperly bounded by a real (finite or infinite) T

@ Consistency : Bx is consistent if there is no proposition A for which both
[AIBx] =T and —[A|Bx] =T

@ Propositional calculus :

(i) If A=A’ then [A|Bx] < [A|Bx]
(Il) [A‘B)(7 Cx, Dx] = [A‘(Bx A Cx), Dx]
(fif)  If Bx consistent and —[A|Bx] < T, then AU Bx is consistent

@ Coherence : there exists a non-increasing function So such that, for all x and
consistent Bx

—[A|Bx] = So([A|Bx])

IA et Climat 32 /60



Plausibility, consistency and coherence

Definition

Consider any proposition A on X. Given Bx, the plausibility [A|Bx] is a single real
number, upperly bounded by a real (finite or infinite) T

@ Consistency : Bx is consistent if there is no proposition A for which both
[AIBx] =T and —[A|Bx] =T

@ Propositional calculus :

(i) If A=A’ then [A|Bx] < [A|Bx]
(Il) [A‘B)(7 Cx, Dx] = [A‘(Bx A Cx), Dx]
(fif)  If Bx consistent and —[A|Bx] < T, then AU Bx is consistent

@ Coherence : there exists a non-increasing function So such that, for all x and
consistent Bx

—[A|Bx] = So([A|Bx])

@ Density : the set [So(T), T] admits a non-void, dense and consistent subset
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Plausibility, consistency and coherence

Consider any proposition A on X. Given Bx, the plausibility [A|Bx] is a single real
number, upperly bounded by a real (finite or infinite) T

This axiom of non-ambiguity is particularly important
This is an assumption of universal comparability

Consequence : an additional information (not a knowledge) can only increase or
decrease the plausibility of a proposition
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Plausibility, consistency and coherence

Consider any proposition A on X. Given Bx, the plausibility [A|Bx] is a single real
number, upperly bounded by a real (finite or infinite) T

This axiom of non-ambiguity is particularly important
This is an assumption of universal comparability

As seen later, the differences between probabilistic logic and extra-probabilistic logics
arises from the agreement or disagreement with this assumption

Jaynes [16] argues for its validity on pragmatic grounds
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Plausibility, consistency and coherence

Consider any proposition A on X. Given Bx, the plausibility [A|Bx] is a single real
number, upperly bounded by a real (finite or infinite) T

It is supported when we talk about quantities X with physical meanings and taking a
unique value at each instant (possibly given a finite measurement precision)

It may be not supported if we talk about :
@ magnitudes considered at the quantum scale (e.g., in neutronics)

@ imaginary magnitudes (e.g., latent variables)

Remember that we are dealing with objective information on X, not interpreted
knowledge !
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Controversy on density axiom

Density : the set [So(T), T] admits a non-void, dense and consistent subset

Can be false when the set of all propositions is finite (e.g., discrete and bounded) [15]

Could be partially removed by arguments provided by Snow [31], plaiding for infinite
gradations of plausibility within even a single, finite domain

The source of an objective rational measure of belief is external to the cognitive apparatus of
the believer. Its value is determined by the vagaries of the real world or by some idealized model
of the world. There is no way to tell in advance just which values must arise, and each value
may be graduated with arbitrary precision. Any such value can simply be adopted by the believer
without recourse to unboundedly precise discrimination between affective states related to
credibility... [31]

Working (as usually) with uncountable input spaces for X is not an issue :-)
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The complete logic vulgarized

Reproductibility rule : two equivalent assertions about X have the same plausibility

Non-contradiction rule : if it exists several ways of coming to the same conclusion
about X, all have the same plausibility

Consistency rule : the logic cannot reach a conclusion contradicted by the common
deductive rules (e.g., transitivity)

Integrity rule : the logic cannot disregard a part of information to reach to a
conclusion about X to come to a conclusion

Monotony rule : the plausibility of the non-exclusive union of two assertions is at
least equal to the upper plausibility of each

© 06 6 0 o060

Product rule : the plausibility of the intersection of two assertions is at most equal
to the lower plausibility of each
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Cox-Jaynes representation theorem

Originally proven (erroneously) by Cox [4], corrected by Jaynes [16], extended more
rigorously by Paris [23], Van Horn [34] Dupré and Tipler [9] (among others) then
finalized by Terenin and Draper [32]

Theorem

Under the previous assumptions, there exists a continuous, increasing function P such
that, for every proposition A, C and consistent Bx,

(i) P([A|Bx]) = 0iif A is known to be false given the information in X
(i) P([A|Bx]) =1 iif Ais known to be true given the information in X
(ii)) 0 <P([A|Bx]) < 1
(iv) P([AA C|Bx]) = P([AIBx])P([C|A, Bx])

(v) P(=[A[Bx]) = 1 — P([A|Bx])

Any system of plausible reasoning, under the previous assumptions, is isomorphic to
probability theory
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A fundamental theorem in artificial intelligence

Goertzel [13] proved that if the consistency rule is weakened, then plausibilities behave
approximately like probabilities

The probability theory is relevant to account for uncertainties on a subject explored by a
cognitive system (human or machine) which could be not completely consistent

Numerous authors in artificial intelligence [35], epistemology [1] or cognitive sciences [5]
recognize the practical relevance of this axiomatic for extracting or updating
information, using Bayes rule
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Critics of the axiom of non-ambiguity

Consider any proposition A on X. Given Bx, the plausibility [A|Bx] is a single real
number, upperly bounded by a real (finite or infinite) T

Its mot common “relaxation" is the assumption that two dimensions are required to
represent correctly the plausibility of a proposition

At the origin of belief theory [29, 30] and possibility theory [8]

Experiments show that such a relaxation is clearly supported when the plausibility is
understood as the summary of a belief, or a gamble [34]

Nonetheless, this “relaxation" remains arbitrary, and usually stands on an interpretation
of the nature of knowledge (expressed through a language), and not of the nature of
information (expressed by physical reality or an idealized model of the reality) [31]
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Treating uncertain prior information
from causal models
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Model uncertainty

Practical models used by engineers (e.g., implemented computer codes ¥'"’) can produce
prior simulations of a phenomenon &

Real phenomenon —  Theoretical model — Algorithmic model — Implemented model
z Z/ z// Z///
We want to define what is the conceptual nature of model uncertainty affecting ¥

We could ask the question otherwise : what is the conceptual nature of reduction of
model uncertainty ?

We need also to define &'/

IA et Climat 42 / 60



What is ¥ in usual cases?

Program. Sequence of operations and instructions

Algorithm. Finite and non-ambiguous sequence of operations and instructions
allowing for solving a problem that can be solved exhaustively

Self-delimiting program. A program that ends. Its ending is a command of the program
itself
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Reduction of model uncertainty

Happens at step ¥

@ Refining the algorithmic description ¥ by adding new parameters and/or
structural equations, necessarily based on improvement of ¥’

@ Refining the execution of ¥’ (e.g., improving a tolerance)

Reducing model uncertainty implies to reduce model error

Maybe the nature of model error could say something about the nature of model
uncertainty ?

We consider an illustrative example
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Incalculability of model error : a result

Consider a real phenomenon T with output Y described by

xxXxz — T
>:X,Z — Y

where X are known and treated variables, and Z are unknown or untreated variables

Consider a self-delimiting, calculable model of
Xd — Ty
s ! RV
where
@ a4 G x is the subset of x that can be reached by a calculus

@ Y(xd,xz) = Ta (Galerkin problem solving)

Assume the following hypotheses

(H1) : Card(xqd) < oo,
(H2) : xz is countable and Card(xz) < cc.
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Incalculability of model error : a result

Assume that T, is a metric space

It is possible to define a model error §(x, z), through a measure D such that, for all
couple (x,2) € xa X xz,

§(x,z) = D{X"(x),X(x,2)} > 0
with §(x,z) = 0 iif ¥"'(x) = X(x, z)

Proposition [B. and Denis 2017]

The model error §(x, z) cannot be calculated V(x, z) € xa X Xz

Proof : based on tools of computational complexity theory

A more general result can be obtained using Turing's machines
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Reduction of model uncertainty

The previous proposition (and its extensions) indicate that no algorithm is able to
compute all the values of the model error §(x, z)

@ We cannot prove that the error never exists

@ Being cautious, we assume its existence
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Reduction of model uncertainty

What would be the nature of the best reachable (computable) approximation §(x, z) of
o(x,z)7?

@ 5(x, z) should be computed by a self-delimiting program

@ however there is no recursive function allowing to predict the next value of
3(x',Z') at (X', 2)

It comes that any finite sequence of §(x;, z;) is exhaustively described only by itself

The adapted formalism to describe this property is the following

Kolmogorov's algorithmic complexity

Kolmogorov's complexity H(s) of a program producing a sequence s is the length of the
smallest program required to generate s.
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Reduction of model uncertainty

A consequence of the impossibility of compressing the information in the sequence of
0(xi, zi) is the following : 3¢ € R such that

H(S(xl,zl),...,g(x,,,z,,)) > n-—c. (1)

Result (1) implies that the sequence &(x;, ;) is random in the sense of Chaitin-Levin

Proposition (B. and Denis 2017)

The best computable approximation of model error is random.

Randomness contamines the nature of all concepts incorporating model error

It is arguable to use probabilities for modeling epistemic model uncertainty
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Stochastic prior modeling : examples and recipes

(if time ok)
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Take-home message

Need to define, locate and separate the two sources of uncertainty

How modelling epistemic uncertainty ? Bayesian principles

IA et Climat 51 / 60



Perspectives

@ Good principles of modelling epistemic and aleatoric uncertainties in grey-box
computer codes

@ How about the other theories of uncertainties ?
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