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August	2005:	Hurricane	Katrina	–	Reuters	



October	2012:	Hurricane	Sandy	–	Reuters	



August	2013:	Rim	Fire,	California	–	Reuters	



December	2017:	Ventura	County,	California	–	Associated	Press	



January	2014:	Drought,	Folsom	Lake	–	California	Department	of	Water	Resources	



Vision	
	
	

	
Machine	learning	can	shed	light	on	climate	change.	

	
	



Vision	
	
	

	
How	does	climate	change	affect	extreme	events?	

	
	



Intergovernmental	Panel	on	Climate	Change	(IPCC),	2013	

Surface	Temperature	



Intergovernmental	Panel	on	Climate	Change,	2012	



Intergovernmental	Panel	on	Climate	Change,	2012	



Intergovernmental	Panel	on	Climate	Change,	2012	



	

	
Extreme	events	are	rare	by	defini2on.	
	
	
Climate	change	may	affect	their	distribu2on.	
	
	
è	Past	sta2s2cs	are	not	sufficient	for	future	predic2on.	
	
	



	

	
Augment	historical	data	with	climate	model	simula2ons.	
	
	
Massive,	high-dimensional,	big	data.	
	
	
That’s	where	machine	learning	comes	in!	
	



Climate	data	types		
•  Past:	Historical	data	

–  Limited	amounts	
–  Very	heterogeneous	

	
•  Present:	Observa2on	data	

–  Large	quan22es	recently	
–  High-dimensional	
–  Can	be	unlabeled,	sparse	

•  Past,	Present,	Future:	Climate	model	simula2ons	
–  Massive,	high-dimensional	
–  Encodes	scien2fic	domain	knowledge,	physics	
–  Some	informa2on	lost	in	discre2za2ons	
–  Future	predic2ons	cannot	be	validated	



2011 										First	Interna2onal	Workshop	on	Climate	Informa2cs		
	 	 	 	 	New	York	Academy	of	Sciences	
																			Climate	Informa2cs	Wiki	launched	
2013										“Climate	Informa2cs”	book	chapter	[Monteleoni	et	al.	2013]		
	
à	In	the	first	5	years:	par2cipants	from	over	19	countries	and	30	states		

		
2018										Climate	Informa2cs	turns	8!	With	a	Hackathon	since	2015!	
					 	 	 						Na2onal	Center	for	Atmospheric	Research,	Boulder,	CO,	USA	

	
	
	
	
	
	
	
	

Climate	Informa2cs	



Challenge	problems	in	climate	informa2cs		
[Banerjee	&	M,	NIPS	Tutorial,	2014]	

	

1.  Past:	Paleo-climate	reconstruc2on		
	 	What	was	the	climate	before	we	had	thermometers?	

2. 	Local:	Climate	downscaling	
	 	What	climate	can	I	expect	in	my	own	backyard?	

3.	 	Future:	Climate	model	ensembles		
	 	How	to	reduce	uncertainty	on	future	predic2ons?	

4. 	Spa2otemporal:	Space	and	2me		
									How	to	capture	dependencies	over	space	and	2me?	

5.	 	Tails/impacts:	Extreme	events		
	 	What	are	extreme	events	and	how	will	climate	change	affect	them?	

6.	 	Other	problems	
	 	Data-rich	playground	with	many	opportuni2es	for	ML	to	have	an	impact!	



On	the	menu	

Climate	Informa2cs:	a	compelling	applica2on	area	for	ML	
	For	further	info	see	our	NIPS	2014	tutorial	

	
	
Algorithms	for	learning	when	the	concept	can	vary	over	
mul2ple	dimensions	

	E.g.	2me,	space	
	
	

Examples	of	applica2ons	posing	new	ques2ons	for	ML	
	



On	the	menu	

	
	
Applica2ons	can	pose	interes2ng	new	ques2ons	for	ML	
•  	 Online	+	spa2al	
•  	 Predic2on	at	mul2ple	2mescales	
•  	 Tracking	highly-deformable	paserns	
	
	



Learning	from	spa2otemporal	data	 		

•  Learning	from	non-sta2onary	2me	series	
–  Simultaneously	learn	the	level	of	non-sta2onarity		
–  Exploit	local	temporal	structure	via	mul2-task	learning	

•  Learning	from	non-sta2onary	spa2otemporal	data	
–  Exploit	local	spa2al	structure	

•  Distributed	online	learning		
•  Hidden	Markov	random	field	



Climate	model:	a	complex		
system	of	interac2ng		
mathema2cal	models	
�  Not	data-driven	
�  Based	on	scien2fic		
					first	principles	

•  Meteorology	
•  Oceanography	
•  Geophysics	
•  …	

•  Discre2za2on	into		
					grid	boxes	
•  Scale	resolu2on		
						differences	

	

Climate	Modeling	101	

credit:	UCAR/NCAR,	NOAA		



Intergovernmental	Panel	on	Climate	Change	
•  IPCC:	Intergovernmental	Panel	on	Climate	Change	

–  Nobel	Peace	Prize	2007	(shared	with	Al	Gore).	
–  Interdisciplinary	scien2fic	body,	formed	by	UN	in	1988.	
–  Fourth	Assessment	Report,	2007,	on	global	climate	change	

450	lead	authors	from	130	countries,	800	contribu2ng	authors,								
over	2,500	reviewers.	

–  Fiuh	Assessment	Report,	September	2013.	Over	830	authors.	

•  Climate	models	contribu2ng	to	IPCC	reports	include:	
							Bjerknes	Center	for	Climate	Research	(Norway),	Canadian	Centre	for	Climate	Modelling	

and	Analysis	(Canada),	Centre	Na2onal	de	Recherches	Météorologiques	(France),	
Commonwealth	Scien2fic	and	Industrial	Research	Organisa2on	(Australia),	Geophysical	
Fluid	Dynamics	Laboratory	(Princeton	University),	Goddard	Ins2tute	for	Space	Studies	
(NASA),	Hadley	Centre	for	Climate	Change	(United	Kingdom	Meteorology	Office),	Ins2tute	
of	Atmospheric	Physics	(Chinese	Academy	of	Sciences),	Ins2tute	of	Numerical	
Mathema2cs	Climate	Model	(Russian	Academy	of	Sciences),	Is2tuto	Nazionale	di	Geofisica	
e	Vulcanologia	(Italy),	Max	Planck	Ins2tute	(Germany),	Meteorological	Ins2tute	at	the	
University	of	Bonn	(Germany),	Meteorological	Research	Ins2tute	(Japan),	Model	for	
Interdisciplinary	Research	on	Climate	(Japan),	Na2onal	Center	for	Atmospheric	Research	
(Colorado),	among	others.	
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•  No	one	model	predicts	best	all	the	2me,	for	all	variables	
•  Average	predic2on	is	beser	predictor	than	any	single	model		 	

	 	[Reichler	&	Kim,	Bull.	AMS	‘08],	[Reifen	&	Toumi,	GRL	’09]	

•  Coupled	Model	Intercomparison	Project	(CMIP)	
								 	Archive	of	model	runs	[Meehl	et	al.,	Bull.	AMS	’00]	
•  Bayesian	approaches	in	climate	science,	e.g.	[Smith	et	al.	JASA	’08]	

•  IPCC	Expert	Mee2ng,	2010,	on	how	to	combine	model	predic2ons	

		
Challenge:		Improve	predic2ons	of	the	IPCC	ensemble			

	Predict	future	climates	using	past	observa2ons		
	and	the	mul2-model	ensemble	predic2ons	

	

Can	we
	do	be

ser	us
ing	Machine

	Learni
ng?			

How	to	predict	future	climates?	



Contribu2ons	
	
•  Tracking	Climate	Models	(TCM)	[M,	Schmidt,	Saroha,	&	Asplund,	

NASA	CIDU	2010;	SAM	2011]:		Online	learning	with	expert	advice	

•  Neighborhood-Augmented	TCM	(NTCM)	[McQuade	&	M,	AAAI	
2012]:	Extend	TCM	to	model	geospa2al	neighborhood	influence	

•  MRF-based	approach	[McQuade	&	M,	book	chapter,	2017]	

•  Mul2-resolu2on	temporal	structure	[McQuade	&	M,	Climate	
Informa2cs	2015;	DSMM	2016]:	online	mul2-task	learning	

	
•  Climate	Predic2on	via	Matrix	Comple2on	[Ghafarianzadeh	&	M,	

Late-Breaking	Paper,	AAAI	2013]:	use		sparse	matrix	comple2on	

	
	



Roadmap	

developer.apple.com	

•  Learning	from	data	that	varies	over	2me	

•  Learning	from	spa2otemporal	data	that	varies	over	2me	&	space	

	

	



Average	predic2on	

Model	A	 Model	B	 Model	C	 Model	D	 Model	E	



Model	A	 Model	B	 Model	C	 Model	D	 Model	E	

Adap2ve,	weighted	average	predic2on	



Model	A	 Model	B	 Model	C	 Model	D	 Model	E	

Adap2ve,	weighted	average	predic2on	



Model	A	 Model	B	 Model	C	 Model	D	 Model	E	

Adap2ve,	weighted	average	predic2on	



Model	A	 Model	B	 Model	C	 Model	D	 Model	E	

Adap2ve,	weighted	average	predic2on	



	

	
	
Tradeoff:	Quickly	finding	current	best	predic2ng	model	vs.	
being	ready	to	quickly	switch	to	other	models.		

		
	
Tradeoff	hinges	on	how	ouen	the	iden2ty	of	the	best	model	
switches.	

Tradeoff:	explore	vs.	exploit	



Roadmap	

developer.apple.com	

•  Learning	from	data	that	varies	over	2me	

•  Learning	from	spa2otemporal	data	that	varies	over	2me	&	space	

	

	



Online	learning:	2me-varying	data	

Learn-α	Algorithm	[M	&	Jaakkola,	NIPS	2003]:		

•  Learns	the	switching-rate:	level	of	non-sta2onarity:	α	
•  Tracks	a	set	of	online	learning	algorithms,	each	with	a	different	α	value	
•  Each	algorithm	maintains	weights	over	experts	(e.g.	climate	models)	



Online	learning	with	expert	advice	
Model	changing	observa2ons	via	a	(generalized)	Hidden	Markov	Model			
	-	where	hidden	state	is	iden2ty	of	the	“best	expert”	(e.g.	climate	model)	

	

	
	
	
	
	

	
	
	
	
Performing	Bayesian	updates	yields	a	family	of	online	learning	algorithms	
with	transi2on	dynamics	P(	i	|	j	).	

pt+1(i) �
�

j

pt(j)e�L(j,t)p(i|j)



Online	learning	with	expert	advice	
Model	changing	observa2ons	via	a	(generalized)	Hidden	Markov	Model			
	-	where	hidden	state	is	iden2ty	of	the	“best	expert”	(e.g.	climate	model)	

	

	
	
	
	
	

	
	
	
	
Sta2c-Expert	[Lislestone	&	Warmuth’89],	Hedge	[Freund	&	Schapire	’97]	

algorithm:		P(	i	|	j	)	=	δ(i,j).	
pt+1(i) � pt(i)e�L(i,t)



Online	learning:	2me-varying	data	
Model	changing	observa2ons	via	a	(generalized)	Hidden	Markov	Model			
	-	where	hidden	state	is	iden2ty	of	the	“best	expert”	(e.g.	climate	model)	

	

	
	
	
	
	

	
	
	
	
[Herbster	&	Warmuth,	’98]:	Fixed-Share	algorithm	models	switching	w.p.	α	
	

P (i|j;↵) =
(
(1� ↵) i = j
↵

n�1 i 6= j



Online	learning:	2me-varying	data	

Learn-α	Algorithm	[M	&	Jaakkola,	NIPS	2003]:		
•  Learns	the	switching-rate:	level	of	non-sta2onarity:	α	
•  Tracks	a	set	of	online	learning	algorithms,	each	with	a	different	α	value		
•  Each	algorithm	maintains	weights	over	experts	(e.g.	climate	models)	
	

	Survey	of	related	work:	[Koolen	&	de	Rooij,	Trans.	Info	Theory	2013]	

Sta2c-expert	updates	over	α-experts		

Fixed-share(αj)	updates	over	
experts	(climate	models)	
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[M,	Schmidt,	Saroha,	&	Asplund,	NASA	CIDU	2010;	SAM	2011]	
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•  Learning	from	data	that	varies	over	2me	

•  Learning	from	spa2otemporal	data	that	varies	over	2me	&	space	
–  Model	spa2al	influence		

	

	



Of	general	interest	for	ML:	

Online	+	Spa2al	



Online	learning:	spa2otemporal	data	
[McQuade	&	M,	AAAI	2012]	

•  Climate	predic2ons	are	made	at	higher	geospa2al	resolu2ons	
•  Run	Learn-α	(variant)	on	mul2ple	sub-regions	par22oning	globe	
•  Distribu2on	over	climate	models	varies	over	both	2me	and	space	
•  Model	neighborhood	influences	among	geospa2al	regions	

	



Incorpora2ng	neighborhood	influence	

Neighborhood-augmented	Learn-α	
–  Non-homogenous	HMM	transi2on	dynamics:	

Increase	probability	of	transi2oning	to	a	model	performing	well	in	
neighborhood		

•  S(r)	-	neighborhood	scheme:	set	of	“neighbors”	of	region	r	
•  Pt,s(i)	-	probability	of	expert	(climate	model)	i	in	region	s	
•  β	-	regulates	geospa2al	influence	
•  Z	-	normaliza2on	factor	

	



Markov	Random	Field-based	approach	

Time t 

Time t 

Time t-1 

Geospa2al	la}ce	

[McQuade	&	M,	book	chapter,	2017]	



Markov	Random	Fields	

Extend	from	HMM	for	2me	series	to	
hidden	Markov	random	field	(MRF)	for	
spa2otemporal	field	

– Model	local	spa2al	dependencies	x2 

y1 x1 

x3 

y2 

y3 



Extending	Fixed-Share	to	a	Spa2al	La}ce	

Construct	spa2al	la}ce		
•  Spa2al	dependencies	of	

same	form	as	temporal	
dependencies	

•  Different	α2me	and	αspace	
parameters	

•  Latent	variables:	best	expert	
at	each	2me	and	loca2on	

•  Need	to	compute	marginals	

Time t 

Time t 

Time t-1 



Global	predic2on	loss	



Regional	predic2on	loss	



Roadmap	
•  Learning	from	data	that	varies	over	2me	

•  Learning	from	spa2otemporal	data	that	varies	over	2me	&	space	
–  Model	spa2al	influence		
–  Model	temporal	influence	

	

	

developer.apple.com	



Of	general	interest	for	ML:	

Predic2on	at	mul2ple	2mescales	



Seasonal	predic2on:	Online	mul2-task	learning	

•  Given	forecasts	of	mul2ple	
2me	periods	

•  Each	forecast	period	
treated	as	a	different	task	

•  Allow	influence	between	
tasks	

[McQuade	&	M,	Climate	Informa2cs	2015;	SIGMOD	DSMM	2016]	



Online	mul2-task	learning	

	Mul2-task	update	rule	(extended	from	Hedge	/	Sta2c-Expert	algorithm)	

Task-similarity	matrix		[cf.	Saha	et	al.,	AISTATS	2011]	
	-	Allow	influence	between	“neighboring”	forecast	lengths,	parameterized	by	s	

	

S	=	
	

Months:					0.5													1.5	 					2.5 							3.5 					.		.		.			 						11.5	

			
		0.5														
	
		1.5							
	
				… 														
	
	
11.5	

pt+1,j(i) / pt,j(i)e
�

P
k Sj,kLk,t(i)



53	

Results	vs.	standard	Hedge	



Results	vs.	standard	Hedge	
	
	
	
	
	
	
	
	
For	each	of	the	12	forecast	periods,	sharing	influence	from	other	
forecast	periods	improved	predic2ons.	

	Only	for	the	2	forecast	periods	was	loss	increased	for	some	s	values.	
	
Applica2on	to	financial	vola2lity	predic2on	[McQuade	&	M,	DSMM	2016]	



Future	work	
About	those	hurricanes	this	Fall…		
	
Ques2on:		
Can	ML	improve	understanding,	predic2on	of	the	following?	
•  	 Geographical	movement	(tracks)	of	storms	
•  	 Intensifica2on	into	severe	storms	

–  hurricanes,	cyclones,	typhoons	

	
	Sub-ques2on:		
	Is	deep	learning	an	effec2ve	approach	to	such	problems?		

	



ML	for	severe	storms:	related	work		
•  Meteorology	community	has	used	“method	of	analogs”	

–  essen2ally	Nearest	Neighbor	

•  Object	tracking	in	ML/CV	seems	to	rely	on	some	level	of	rigidity	
–  But	if	you	know	of	algorithms	for	tracking	non-rigid	paserns	(e.g.	in	
fluids),	please	let	us	know!	

•  ConvLSTM	used	for	precipita2on	nowcas2ng	[Shi	et	al.,	NIPS	‘15]	

•  CNN	for	classifica2on	of	cyclones	from	sta2c	images	[Liu	et	al.,	‘16]	
–  Sta2c:	no	2me	dimension	
–  Highly	curated	“easy”	data	set		



Of	general	interest	for	ML	/	CV:	

Tracking	highly-deformable	paserns	



Take-home	messages	
Climate	informa2cs	is	a	compelling	applica2on	area	for	ML	

	For	further	info	see	our	NIPS	2014	tutorial	
	
Algorithms	for	learning	when	the	concept	can	vary	over	
mul2ple	dimensions	

	We	can	learn	the	level	of	non-sta2onarity	in	2me,	space	
	We	can	exploit	local	structure	in	space	and	2me	
	This	is	a	rich	area	with	remaining	open	ques2ons	

	
Applica2ons	can	pose	interes2ng	new	ques2ons	for	ML	

	Online	+	spa2al	
	Predic2on	at	mul2ple	2mescales	
	Tracking	highly-deformable	paserns	

	
	



Funded	PhD	posi2ons	available	in	Colorado!		
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 Thank you!  And thanks to my collaborators:



Resources	

•  Climate	Informa2cs:	www.climateinformatics.org
–  Links	to	resources,	Climate	Informa2cs	workshops,	online	community	
	

	
•  8th	Interna2onal	Workshop	on	Climate	Informa2cs,	2018	
www2.cisl.ucar.edu/events/workshops/
climate-informatics/2018/home

	


