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Learning from spatiotemporal data with both spatial
and temporal non-stationarity
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Machine learning can shed light on climate change.



How does climate change affect extreme events?
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Intergovernmental Panel on Climate Change (IPCC), 2013
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Probability of Occurrence

Increased Variability
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Extreme events are rare by definition.

Climate change may affect their distribution.

=>» Past statistics are not sufficient for future prediction.



Augment historical data with climate model simulations.

Massive, high-dimensional, big data.

That’s where machine learning comes in!



Climate data types

Past: Historical data
— Limited amounts
— Very heterogeneous

Present: Observation data
— Large quantities recently
— High-dimensional
— Can be unlabeled, sparse

Past, Present, Future: Climate model simulations
— Massive, high-dimensional
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Climate Informatics

2011 First International Workshop on Climate Informatics
New York Academy of Sciences
Climate Informatics Wiki launched
2013 “Climate Informatics” book chapter [Monteleoni et al. 2013]

-2 In the first 5 years: participants from over 19 countries and 30 states

2018 Climate Informatics turns 8! With a Hackathon since 2015!
National Center for Atmospheric Research, Boulder, CO, USA



Challenge problems in climate informatics
[Banerjee & M, NIPS Tutorial, 2014]

1. Past: Paleo-climate reconstruction
What was the climate before we had thermometers?

2. Local: Climate downscaling
What climate can | expect in my own backyard?

3. Future: Climate model ensembles

How to reduce uncertainty on future predictions?
4. Spatiotemporal: Space and time

How to capture dependencies over space and time?

5. Tails/impacts: Extreme events
What are extreme events and how will climate change affect them?

6. Other problems

Data-rich playground with many opportunities for ML to have an impact!



On the menu

Climate Informatics: a compelling application area for ML
For further info see our NIPS 2014 tutorial

Algorithms for learning when the concept can vary over
multiple dimensions

E.g. time, space

Examples of applications posing new questions for ML



On the menu

Applications can pose interesting new questions for ML
*  Online + spatial

* Prediction at multiple timescales

* Tracking highly-deformable patterns



Learning from spatiotemporal data

* Learning from non-stationary time series
— Simultaneously learn the level of non-stationarity
— Exploit local temporal structure via multi-task learning

* Learning from non-stationary spatiotemporal data
— Exploit local spatial structure

e Distributed online learning
* Hidden Markov random field



Climate Modeling 101

Climate model: a complex e oot
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Intergovernmental Panel on Climate Change

* |[PCC: Intergovernmental Panel on Climate Change

— Nobel Peace Prize 2007 (shared with Al Gore).
— Interdisciplinary scientific body, formed by UN in 1988.

— Fourth Assessment Report, 2007, on global climate change
450 lead authors from 130 countries, 800 contributing authors,
over 2,500 reviewers.

— Fifth Assessment Report, September 2013. Over 830 authors.

Climate models contributing to IPCC reports include:

Bjerknes Center for Climate Research (Norway), Canadian Centre for Climate Modelling
and Analysis (Canada), Centre National de Recherches Météorologiques (France),
Commonwealth Scientific and Industrial Research Organisation (Australia), Geophysical
Fluid Dynamics Laboratory (Princeton University), Goddard Institute for Space Studies
(NASA), Hadley Centre for Climate Change (United Kingdom Meteorology Office), Institute
of Atmospheric Physics (Chinese Academy of Sciences), Institute of Numerical
Mathematics Climate Model (Russian Academy of Sciences), Istituto Nazionale di Geofisica
e Vulcanologia (ltaly), Max Planck Institute (Germany), Meteorological Institute at the
University of Bonn (Germany), Meteorological Research Institute (Japan), Model for
Interdisciplinary Research on Climate (Japan), National Center for Atmospheric Research
(Colorado), among others.



Global mean temperature anomalies

«sl| = Observed

— Multi-model average prediction
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How to predict future climates?

* |PCC Expert Meeting, 2010, on how to combine model predictions

4 N
Challenge: Improve predictions of the IPCC ensemble

Predict future climates using past observations

and the multi-model ensemble predictions




Contributions

Tracking Climate Models (TCM) [M, Schmidt, Saroha, & Asplund,
NASA CIDU 2010; SAM 2011]: Online learning with expert advice

Neighborhood-Augmented TCM (NTCM) [McQuade & M, AAAI
2012]: Extend TCM to model geospatial neighborhood influence

MRF-based approach [McQuade & M, book chapter, 2017]

Multi-resolution temporal structure [McQuade & M, Climate
Informatics 2015; DSMM 2016]: online multi-task learning

Climate Prediction via Matrix Completion [Ghafarianzadeh & M,
Late-Breaking Paper, AAAI 2013]: use sparse matrix completion



Roadmap
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Average prediction
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Adaptive, weighted average prediction
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Adaptive, weighted average prediction
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Adaptive, weighted average prediction
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Adaptive, weighted average prediction

O U = = O

Model A

Model B

~

Model C

>

Model D
e\"’\ Ess‘#c‘, A\




Tradeoff: explore vs. exploit

Tradeoff: Quickly finding current best predicting model vs.
being ready to quickly switch to other models.

Tradeoff hinges on how often the identity of the best model
switches.
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Online learning: time-varying data
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Learn-a. Algorithm [M & Jaakkola, NIPS 2003]:

* Learns the switching-rate: level of non-stationarity: a
* Tracks a set of online learning algorithms, each with a different a value

e Each algorithm maintains weights over experts (e.g. climate models)



Online learning with expert advice

Model changing observations via a (generalized) Hidden Markov Model
- where hidden state is identity of the “best expert” (e.g. climate model)
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Performing Bayesian updates yields a family of online learning algorithms
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Online learning with expert advice

Model changing observations via a (generalized) Hidden Markov Model
- where hidden state is identity of the “best expert” (e.g. climate model)
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Static-Expert [Littlestone & Warmuth’89], Hedge [Freund & Schapire '97]
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Online learning: time-varying data

Model changing observations via a (generalized) Hidden Markov Model
- where hidden state is identity of the “best expert” (e.g. climate model)
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Online learning: time-varying data
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Learn-a Algorithm [M & Jaakkola, NIPS 2003]:
* Learns the switching-rate: level of non-stationarity: a
e Tracks a set of online learning algorithms, each with a different a value

e Each algorithm maintains weights over experts (e.g. climate models)

Survey of related work: [Koolen & de Rooij, Trans. Info Theory 2013]



Prediction loss
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Roadmap

* Learning from data that varies over time
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* Learning from spatiotemporal data that varies over time & space

— Model spatial influence
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Of general interest for ML:

Online + Spatial



Online learning: spatiotemporal data

[McQuade & M, AAAI 2012]
* Climate predictions are made at higher geospatial resolutions
* Run Learn-a (variant) on multiple sub-regions partitioning globe
e Distribution over climate models varies over both time and space
 Model neighborhood influences among geospatial regions
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Incorporating neighborhood influence

Neighborhood-augmented Learn-a
— Non-homogenous HMM transition dynamics:

(1—a) if i=k
ko) = (1—7) > Pl if i£k

Z ' sGS (1)

P(i

Increase probability of transitioning to a model performing well in
neighborhood

e S(r) - neighborhood scheme: set of “neighbors” of region r

* P, (i) - probability of expert (climate model) i in region s

* [3-regulates geospatial influence

e Z-normalization factor



Markov Random Field-based approach
[McQuade & M, book chapter, 2017]

Time t —
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Markov Random Fields

Extend from HMM for time series to
hidden Markov random field (MRF) for
spatiotemporal field

— Model local spatial dependencies




Extending Fixed-Share to a Spatial Lattice

Time t —

:/J:’ = - Construct spatial lattice
D - - * Spatial dependencies of

same form as temporal

dependencies

* Different a,,.and a
parameters

e Latent variables: best expert
at each time and location

* Need to compute marginals

space




Global prediction loss
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Regional prediction loss
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Of general interest for ML:

Prediction at multiple timescales



Seasonal prediction: Online multi-task learning
[McQuade & M, Climate Informatics 2015; SIGMOD DSMM 2016]

30 Day 60 Day 91 Day
o Predictions  Predictions  Predictions ™
* Given forecasts of multiple ¢ = 60d ®

time periods t -30d l

* Each forecast period

-’ By
treated as a different task t l..@f

—— o —— ————— —

 Allow influence between t + 30d

task Y
e t + 60d %

. = Prediction Initiated ¢= Prediction Evaluated



Online multi-task learning

Task-similarity matrix [cf. Saha et al., AISTATS 2011]
- Allow influence between “neighboring” forecast lengths, parameterized by s

Months: 0.5 1.5 2.5 3.5 - 11.5

s 0 0 ...

S:O'5 I+s 1+s

5| ) S 1 S

14+2s 1+2s 1+42s

1
_ I+s_

11.5

Multi-task update rule (extended from Hedge / Static-Expert algorithm)
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Mean Loss Difference

Results vs. standard Hedge

.10* Forecast Period: 0.5 Months . Forecast Period: 7.5 Months
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For each of the 12 forecast periods, sharing influence from other
forecast periods improved predictions.

Only for the 2 forecast periods was loss increased for some s values.

Application to financial volatility prediction [McQuade & M, DSMM 2016]



Future work

About those hurricanes this Fall...

Question:

Can ML improve understanding, prediction of the following?

* Geographical movement (tracks) of storms
* Intensification into severe storms

— hurricanes, cyclones, typhoons

Sub-question:

Is deep learning an effective approach to such problems?



ML for severe storms: related work

* Meteorology community has used “method of analogs”
— essentially Nearest Neighbor

* Object tracking in ML/CV seems to rely on some level of rigidity

— But if you know of algorithms for tracking non-rigid patterns (e.g. in
fluids), please let us know!

ConvLSTM used for precipitation nowcasting [Shi et al., NIPS ‘15]

CNN for classification of cyclones from static images [Liu et al., ‘16]

— Static: no time dimension
— Highly curated “easy” data set



Of general interest for ML / CV:

Tracking highly-deformable patterns



Take-home messages

Climate informatics is a compelling application area for ML
For further info see our NIPS 2014 tutorial

Algorithms for learning when the concept can vary over
multiple dimensions

We can learn the level of non-stationarity in time, space
We can exploit local structure in space and time
This is a rich area with remaining open questions

Applications can pose interesting new questions for VIL
Online + spatial

Prediction at multiple timescales
Tracking highly-deformable patterns
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Resources

* Climate Informatics: www.climateinformatics.org
— Links to resources, Climate Informatics workshops, online community

e 8t |nternational Workshop on Climate Informatics, 2018

www2.clisl.ucar.edu/events/workshops/
climate-informatics/2018/home




