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History of GFDL Computing

Courtesy V. Ramaswamy, NOAA/GFDL.
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Beowulf clusters
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Dennard Scaling

Table 1 from Dennard (1974). Shows scaling of various quantities
when transistor dimension is reduced by factor κ.
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https://ieeexplore.ieee.org/abstract/document/1050511


Moore’s Law and End of Dennard scaling

Figure courtesy Moore 2011: Data processing in exascale-class
systems.

Processor concurrency: Intel Xeon-Phi.
Fine-grained thread concurrency: Nvidia GPU.
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Theoretical peak performance

Peak flops: computer vendors like! clock speed × number of
ALUs × clock-cycle concurrency (e.g FMA, AVX).

Figure courtesy Moore 2011: Data processing in exascale-class
systems.
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Sustained performance

All ALUs cannot be kept active all the time, and theoretical peak is
unachievable in practice. Measure actually achieved performance
on actual computations.
Linpack (Dongarra 1998) linear algebra package; maximum
achievable performance. Basis for Top500
(http://www.top500.org). Current top machines: Sunway
TaihuLight (China), Tianhe-2 (China), Titan (US).
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http://www.top500.org


Even Linpack is misleading...

Real codes often gated by memory bandwidth.
Roofline model:

Figure courtesy Barba and Yokota SIAM News 2013.
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Top500 revisited

HPCG/HPL ratio is a measure of “percent of peak” (Dongarra and
Heroux 2013).
All recent HPC acquisitions in climate/weather have been on
conventional Intel Xeon (see Balaji et al 2017).
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http://www.geosci-model-dev.net/10/19/2017/


The "Navier-Stokes Computer" of 1986

“The Navier-Stokes computer (NSC)
has been developed for solving
problems in fluid mechanics involving
complex flow simulations that require
more speed and capacity than
provided by current and proposed
Class VI supercomputers. The
machine is a parallel processing
supercomputer with several new
architectural elements which can be
programmed to address a wide range
of problems meeting the following
criteria: (1) the problem is
numerically intensive, and (2) the
code makes use of long vectors.”
Nosenchuck and Littman (1986)
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https://ntrs.nasa.gov/search.jsp?R=19870053967


Irreproducible Computing, Inexact Hardware

Figure 2 from Düben et al, Phil. Trans. A, 2016.
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The inexorable triumph of commodity computing

From The Platform, Hemsoth (2015).
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Deep Learning

From Edwards (2018), ACM.
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https://cacm.acm.org/magazines/2018/6/228030-deep-learning-hunts-for-signals-among-the-noise/fulltext


Low precision arithmetic for Deep Learning

Figure courtesy NVidia. Google TPU also uses low precision.
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Google TPU (Tensor Processing Unit)

Hardware pipelining of steps in matrix-multiply. Figure courtesy
Google.
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ML is subverting the HPC market

Courtesy NVidia, via Seeking Alpha.
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https://seekingalpha.com/article/4083338-nvidia-vs-intel-machine-learning-reach-5-billion-2021
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No separation of "large" and "small" scales

Nastrom and Gage (1985). More fidelity, more complexity over time in
small scales (“physics”).
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Atmospheric process scales

Figure courtesy UCAR.
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Oceanic process scales

Figure courtesy Oregon State University.
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The model zoo

From Bony et al (2013).
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https://link-springer-com/chapter/10.1007/978-94-007-6692-1_14


NGGPS: Next-Generation Global Prediction System

FV3 dynamical core from GFDL for the next-generation forecast model
(target: 3 km non-hydrostatic in 10 years running at ∼ 200 d/d)
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Passing the climate Turing test?

We may be able to simulate everything in great detail, but do we
understand how it works?
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Multi-model “skill scores”

Based on RMS error of surface temperature and precipitation. (Fig. 3
from Knutti et al, GRL, 2013).
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Multi-model skill scores?

More complex models that show the same skill represents an
“advance”!
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The model hierarchy

Molecular biology uses a hierarchy of “models”: E. Coli, C.
Elegans, fruit fly, mouse, H. Sapiens, ...
We have a similar hierarchy of equations: PG, QG, PE,
Boussinesq, anelastic, compressible...
and model types: LES, CRM, AOGCM, ESM, ...
and a hierarchy of idealized experiments: turbulent flow,
radiative-convective equilibrium, aquaplanet, AMIP, OMIP, control,
historical, ...
Community must run common experiments at all levels of the
hierarchy (“idealized MIPs”)...
“Verification” (or falsification) of idealized planet Earth? analysis
must isolate underlying mechanisms even in complex models.

Adapted from Held (2005, 2014). Model Hierarchies Workshop,
November 2016 in Princeton.
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https://www.wcrp-climate.org/gc-model-hierarchies-agenda


Model calibration

Model calibration or “tuning” consists of reducing overall model bias
(usually relative to 20th century climatology) by modifying parameters.
In principle, minimizing some cost function:

C(p1,p2, ...) =
N∑
1

ωi‖φi − φobs
i ‖

Usually the p must be chosen within some observed or theoretical
range pmin ≤ p ≤ pmax .
“Fudge factors” (applying known wrong values) generally frowned
upon (see Shackley et al 1999 discussion on history of “flux
adjustments”. More on that later...)
The choice of ωi is part of the lab’s “culture”!
The choice of φobs

i is also troublesome:
overlap between “tuning” metrics and “evaluation” metrics.
“Over-tuning”: remember “reality” is but one ensemble member!
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Objective methods of tuning

Neelin et al (2010) construct “metamodels” to aid in multi-parameter
optimization. See also Zamboni et al.
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Model-free prediction vs model augmentation

From Pathak et al, PRL (2018), Model-Free Prediction of Large
Spatiotemporally Chaotic Systems from Data: A Reservoir Computing
Approach
Movie: Pathak’s flame front in Quanta.
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https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.120.024102
https://www.quantamagazine.org/machine-learnings-amazing-ability-to-predict-chaos-20180418/


Learn parameterizations from observations

(Courtesy: S-J Lin, NOAA/GFDL).
(Courtesy: D. Randall, CSU;
CMMAP).

Global-scale CRMs (e.g 7 km simulation on the left) and even
super-parameterization using embedded cloud models (right)
remain prohibitively expensive.
Can we learn the statistical aggregate of small scales? See
Schneider et al 2017, Gentine et al (2018), O’Gorman and Dwyer
(2018), Bolton and Zanna (2018), ...
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https://www.nature.com/nclimate/journal/v7/n1/full/nclimate3190.html
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2018GL078202
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018MS001351
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018MS001351


Learning sub-gridscale turbulence

Fig 1 from Bolton and Zanna (2018), in review for JAMES.
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Caltech/MIT Earth Machine

From Schneider et al 2017.
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https://www.nature.com/nclimate/journal/v7/n1/full/nclimate3190.html


Lorenz 96, a nice abstraction

dXk

dt
= −Xk−1(Xk−2 − Xk+1)− Xk + F − hc

b

32∑
j=1

Yj,k + f (1)

dYj,k

dt
= −cbYj+1,l(Yj+2,k − Yj−1,k )− cYj,k +

hc
b

Xk (2)

A nice abstraction of a system with fast and slow modes, whose
coupling strength can be varied... maybe too interesting? See
metastability issues in Schneider et al, GRL (2017).
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https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2017GL076101


Lorenz 96 with slow and fast forcing

dXk

dt
= −Xk−1(Xk−2 − Xk+1)− Xk + F + δFk −

hc
b

32∑
j=1

Yj,k + f (3)

dYj,k

dt
= −cbYj+1,l(Yj+2,k − Yj−1,k )− cYj,k +

hc
b

Xk (4)

F can be time-varying on a “slow” timescale (e.g GHG forcing) or “fast”
(aerosols). Loosely based on Christensen and Berner (2018).
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Lorenz96 in perfect model setting

From Schneider et al 2017. Learn Lorenz96 parameters F ,h, c,b from
prior run.
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https://www.nature.com/nclimate/journal/v7/n1/full/nclimate3190.html


The slow manifold

dU
dt

= −VW + bVZ − aU (5)

dV
dt

= −UW − bUZ − aV + aF (6)

dW
dt

= −UV − aW (7)

dX
dt

= −Z − aX (8)

dZ
dt

= bUV + X − aZ (9)

U,V ,W are derived from vorticity (“Rossby waves”) and X ,Z are
derived from divergence and departures from geostrophy (“gravity
waves”).
From Lorenz (1992), The slow manifold – what is it?
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http://eaps4.mit.edu/research/Lorenz/Slow_man_what_92.pdf


Making ML respect known physical constraints

See momentum conservation discussion in Bolton and Zanna (2018),
Applications of Deep Learning to Ocean Data Inference and Sub-Grid
Parameterisation.

From Ling et al, JCP (2016), Machine learning strategies for systems
with invariance properties
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https://www-sciencedirect-com/science/article/pii/S0021999116301309


Distilling Free-Form Natural Laws from Experimental
Data

From Schmidt and Lipson, Science, 2009. My little hommage, Gaitán
et al (2016), Can we obtain viable alternatives to Manning’s equation
using genetic programming? Eureqa software available under license.
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http://science.sciencemag.org/content/324/5923/81
http://www.sciedupress.com/journal/index.php/air/article/view/9305
http://www.sciedupress.com/journal/index.php/air/article/view/9305


Navier-Stokes from data

From Rudy et al (2017).
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http://advances.sciencemag.org/content/3/4/e1602614


Other canonical PDEs from data

From Rudy et al (2017). Works for other canonical PDE systems as
well! (including conservative and non-linear dissipative chaotic
systems.
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http://advances.sciencemag.org/content/3/4/e1602614


Limitations of training data

From O’Gorman and Dwyer, JAMES, 2018. Limitations of training on
short non-stationary time series.
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https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2018MS001351


Error patterns associated with stationarity assumption

Errors can be traced with warming outside the temperature distribution
of the training period. Caution needed at distribution tails (“extreme
events”). Dixon et al (2016).
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Where models and data are both weak...

Fig 1 from Valdes (2011). GCMs are unable to simulate the
Paleocene-Eocene climate of 55 My ago.
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Questions: metamodels and supermodels

Machine learning and “AI” still is in the positive phase of a hype
cycle (publication bias, reproducibility crisis) but it isn’t all hype. It
is subverting the HPC hardware market.
Huge variety of methods!
Supermodels: some components replaced by learning agents.
Metamodels: low-dimensional emulators.
Fundamental questions still unanswered:

Are model-free methods useful?
How do we derive the invariant basis of a complex system?
Can we use ML to derive the functional form of a slow manifold?
Can we derive a useful model hierarchy?
Can this metamodel be used for parameter uncertainty exploration?
How much physical knowledge (e.g conservation laws) must be
embedded in the ML? What if the embedded knowledge is
incorrect? (“It’s not what you don’t know, it’s what you know for sure
that just ain’t so”, Mark Twain never said.)
What happens to supermodels as the features of the training data
evolve?
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http://science.sciencemag.org/content/359/6377/725
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