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Outline

0 Hardware evolution at the end of Dennard scaling
@ The end of Dennard scaling
@ Specialized and commodity computing
@ Deep learning is an industry driver

© Challenges in model development
@ No separation of scales
@ Calibration of coupled systems

e Applications of machine learning
@ Learning parameterizations from high-resolution simulations
@ Learning low-order manifolds for uncertainty exploration

e Ideas and challenges
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History of GFDL Computing

HISTORY OF GFDL COMPUTING

Growth of Computational Power with Time
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Courtesy V. Ramaswamy, NOAA/GFDL.
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Beowulf clusters

The Stone SouperCor x

& Secure | https://www.extremelinux.info/stonesoup/

Read about the Stone SouperComputer In the News!

While our first Beowulf-style parallel computer isn't built out of the most impressive hardware, we got tired of
fighting for funding and went ahead with what we could find. Much like the classic Tale of Stone Soup, many
individuals contributed to the existing machine*. Because of a complete lack of funding, we used surplus personal
computers donated by individuals from ORNL, the Procurement Dept., Y-12, and K-25, to build a parallel computer
system which uses public domain compilers and message passing libraries. This system was built at literally no
cost.

%Cos( Parallel Computing

We are adding more nodes every week. Click here to donate your personal computer equipment to the Stone SouperComputer. And be
sure to tell your friends.

People are often interested in the price-to-performance ratio of their computer systems. Since our cost was approximately
nothing, any performance results in a zero price-to-performance ratio:

Price =0
Performance ~ anything

* Performance-to-price is more interesting. If we get any performance at all, the performance-to-price ratio goes quickly to
Yinfinity.

Perforfnance _ anything Seo
Price ~0

As soon as you login, we all win!!
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Dennard Scaling

TABLE 1
ScaLinGg ReEsurts ror CircUIT PERFORMANCE

Device or Circuit Parameter Scaling Factor
Device dimension t.x, L, W 1/«
Doping concentration N, ' K
Voltage V' 1/x
Current [ 1/«
Capacitance €A /i 1/
Delay time/circuit VC/I 1/x
Power dissipation/circuit VI 1/«
Power density VI/A4 1

Table 1 from Dennard (1974). Shows scaling of various quantities
when transistor dimension is reduced by factor «.
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https://ieeexplore.ieee.org/abstract/document/1050511

Moore’s Law and End of Dennard scaling

Power and Heat Problems Led to Multiple Cores and
Prevent Further Improvements in Speed
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Jotted line oxtr ora
Source: Ghuck Moore, Data Processing in Exascale-Glass Systems, Apr| 27, 2011. Sakshan Conference on High Speed-Gomputing

Figure courtesy Moore 2011: Data processing in exascale-class
systems.

@ Processor concurrency: Intel Xeon-Phi.
@ Fine-grained thread concurrency: Nvidia GPU.
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Theoretical peak performance

@ Peak flops: computer vendors like! clock speed x number of
ALUs x clock-cycle concurrency (e.g FMA, AVX).

Power and Heat Problems Led to Multiple Cores and
Prevent Further Improvements in Speed

7

10§ o*T Transistors
£ (thousands
o
10 4
5 .
10
—— '_mulﬁ H\lu.‘m
4 . Performance
10 .,pmm
3
10" ¢
g5 Typical Power
10° & i (Watts)
N Number of
10 . Cores.
s
10 -

1975 1980 1985 1990 1995 2000 2005 2010 2015

Jot M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Harr

Source: Chuck Moare, Data Processing in Exascale-Class Systems, April 27, 2011. Salishan Conference on High Speed Computing

Figure courtesy Moore 2011: Data processing in exascale-class
systems.
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Sustained performance

@ All ALUs cannot be kept active all the time, and theoretical peak is
unachievable in practice. Measure actually achieved performance
on actual computations.

@ Linpack (Dongarra 1998) linear algebra package; maximum
achievable performance. Basis for Top500
(http://www.top500.0rg). Current top machines: Sunway
TaihuLight (China), Tianhe-2 (China), Titan (US).

N y
\ - - y

V. Balaji (vbalaji@ipsl.fr) Machine Learning in the Post-Dennard Era 20 February 2019 9/48


http://www.top500.org

Even Linpack is misleading...

@ Real codes often gated by memory bandwidth.
@ Roofline model:
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Figure courtesy Barba and Yokota SIAM News 2013.

V. Balaji (vbalaji@ipsl.fr) Machine Learning in the Post-Dennard Era 20 February 2019 10/48



Top500 revisited

@ HPCG/HPL ratio is a measure of “percent of peak” (Dongarra and

Heroux 2013).

@ All recent HPC acquisitions in climate/weather have been on
conventional Intel Xeon (see Balaji et al 2017).

HPL
) HL| Hece | mpces| %or
site Computer Cores | Rmax
‘ | | (aey | Rank | (Priops) | HPL | Peak
Tianhe-2 NUDT,
NSCC / Guangzhou Xeon 12C 2.26Hz + Intel 3,120,000 33.9 | 1 | .632 | 1.8% 1.1%
| Xeon Phi 57C + Custam | | |
RIKEN Advanced | K computer Fujitsu SPARC64
FIKEN Advanced | K computer Puiitsy SPARCOY ros02¢ | 105 | 4 | 461 | 4.4%|41%
| Titan, Cray XK7 AMD 16C + T I T
o :;’;’Zfr Lap Mvidia Kepler 67U 14+ | 560,640 | 176 | 2 | 322 | 18%|12%
| Custom | I | |
DOE/OS  Mira Blueene/Q, Power BQC
a NatLab | 152 1 60CH: + Costom | 786432 | 859 | 5 | 467 |1.9%|17%
Piz Daint, Cray XC30, Xeon T
Swiss CSC5 | 8C + Nvidia Kepler 14C + | 115,984 6.27 | 6 | 105 | 1.7%|1.3%
Custom | |
s SuperMUC, Intel 8C + I8 | 147,456 2.90 | 14 0833 | 2.9%|2.6%
DbOE/OS Edison, Cray XC30, Xeon,
o o S ahin s Custon | 133.624| 165 | 24| 0786 | 4.8%|3.1%
GSIC Center Tsubame 2.5 Xeon 6C,
TiTech 2.936Hz + Nvidia k20x + 18] 76092 | 2.78 | 15| 073 | 2.6%|13%
Max-Planck | 1DataPlex Xeon 10. 2,864z 45 500 | 128 | 34| 061 | 4.8%|4.2%
Curie tine nodes Bullx B510
CEA/T6CC-6ENCT Intel Xeon 8€ 2.7 GHz + IB 77,184 1,36 33 .051 3.8%| 3.1%
Exploration and | HPCZ, Intel Xeon 10C 2.8
163 1.2%

Production | GHz + Nvidia Kepler 14C + | 62,640 | 3.00 | 12 | .0489
Eni 5.p.A. »
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http://www.geosci-model-dev.net/10/19/2017/

The "Navier-Stokes Computer" of 1986

V. Balaji (vbalaji@ipsl.fr)

“The Navier-Stokes computer (NSC)
has been developed for solving
problems in fluid mechanics involving
complex flow simulations that require
more speed and capacity than
provided by current and proposed
Class VI supercomputers. The
machine is a parallel processing
supercomputer with several new
architectural elements which can be
programmed to address a wide range
of problems meeting the following
criteria: (1) the problem is
numerically intensive, and (2) the
code makes use of long vectors.”
Nosenchuck and Littman (1986)
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https://ntrs.nasa.gov/search.jsp?R=19870053967

Irreproducible Computing, Inexact Hardware

develop inexact FP
hardware architectures
via pruning
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Figure 2 from DuUben et al, Phil. Trans. A, 2016.
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The inexorable triumph of commodity computing
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From The Platform, Hemsoth (2015).
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Deep Learning

Deep Learning Neural Network

Simple Neural Network

L

7 e

*4::’#/@:;\“\'@71
i

L

I R X X

N R
\\p/

@ output Layer

@ Input Layer (O Hidden Layer

From Edwards (2018), ACM.
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https://cacm.acm.org/magazines/2018/6/228030-deep-learning-hunts-for-signals-among-the-noise/fulltext

Low precision arithmetic for Deep Learning
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I ircs | incs | ine | my s | s
3 R 3 X X
Bm

- + +

+ + +
2 f 2 e int32
oy ez DN 2 bR int32

Figure courtesy NVidia. Google TPU also uses low precision.
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Google TPU (Tensor Processing Unit)

Partial Sums

Done

Hardware pipelining of steps in matrix-multiply. Figure courtesy
Google.
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ML is subverting the HPC market
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Source: NVIDIA and publicly available data

Courtesy NVidia, via Seeking Alpha.
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https://seekingalpha.com/article/4083338-nvidia-vs-intel-machine-learning-reach-5-billion-2021

Outline

© Challenges in model development
@ No separation of scales
@ Calibration of coupled systems
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No separation of "large" and "small" scales

wavenumber (rad m1)
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Nastrom and Gage (1985). More fidelity, more complexity over time in

small scales (“physics”).
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Atmospheric process scales
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Oceanic process scales
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The model zoo

> Platonosphere
S
S
% Ideal Gas
§ Law Conceptual EBM
S Models Box Models
Lorenz ‘96 Integrated Assessment
Models
Understanding Radiative Convective EMIC
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o
Reynolds &
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$S
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LES Planet
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Computational Abyss
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Particle Fluid Atmosphere Atmos/Ocean/Land Earth Earth & Human
Systems Systems Systems Systems System

increasingly accessible to experiments

increasing reliance on observational inference

From Bony et al (2013).
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https://link-springer-com/chapter/10.1007/978-94-007-6692-1_14

NGGPS: Next-Generation Global Prediction System

GFDL HIRAM Forecast Model

GFDL Super High Resolution Atmosphere Model
(Super HIRAM)

FV3 dynamical core from GFDL for the next-generation forecast model
(target: 3 km non-hydrostatic in 10 years running at ~ 200 d/d)
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Passing the climate Turing test?

GFDL HIRAM Forecast Model

GFDL Super High Resolution Atmosphere Model
(Super HIRAM)

We may be able to simulate everything in great detail, but do we
understand how it works?
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Multi-model “skill scores”
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Based on RMS error of surface temperature and precipitation. (Fig. 3
from Knutti et al, GRL, 2013).
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Multi-model skill scores?

o

distance from for and

More complex models that show the same skill represents an
“advance”!

V. Balaji (vbalaji@ipsl.fr) Machine Learning in the Post-Dennard Era 20 February 2019 27/48



The model hierarchy

@ Molecular biology uses a hierarchy of “models”: E. Coli, C.
Elegans, fruit fly, mouse, H. Sapiens, ...

@ We have a similar hierarchy of equations: PG, QG, PE,
Boussinesq, anelastic, compressible...

@ and model types: LES, CRM, AOGCM, ESM, ...

@ and a hierarchy of idealized experiments: turbulent flow,
radiative-convective equilibrium, aquaplanet, AMIP, OMIP, control,
historical, ...

@ Community must run common experiments at all levels of the
hierarchy (“idealized MIPs”)...

@ “Verification” (or falsification) of idealized planet Earth? analysis
must isolate underlying mechanisms even in complex models.

Adapted from Held (2005, 2014). Model Hierarchies Workshop,
November 2016 in Princeton.
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https://www.wcrp-climate.org/gc-model-hierarchies-agenda

Model calibration

Model calibration or “tuning” consists of reducing overall model bias

(usually relative to 20th century climatology) by modifying parameters.
In principle, minimizing some cost function:

N
C(p1,p2, ) = Y _ willoi — 69|l
1

@ Usually the p must be chosen within some observed or theoretical
range Pmin < P < Pmax-

@ “Fudge factors” (applying known wrong values) generally frowned
upon (see Shackley et al 1999 discussion on history of “flux
adjustments”. More on that later...)

@ The choice of w; is part of the lab’s “culture”!

@ The choice of d)j?bs is also troublesome:

e overlap between “tuning” metrics and “evaluation” metrics.
e “Over-tuning”: remember “reality” is but one ensemble member!
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Objective methods of tuning
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optimization. See also Zamboni et al.
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Outline

e Applications of machine learning
@ Learning parameterizations from high-resolution simulations
@ Learning low-order manifolds for uncertainty exploration
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Model-free prediction vs model augmentation

From Pathak et al, PRL (2018), Model-Free Prediction of Large
Spatiotemporally Chaotic Systems from Data: A Reservoir Computing
Approach

Movie: Pathak’s flame front in Quanta.
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https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.120.024102
https://www.quantamagazine.org/machine-learnings-amazing-ability-to-predict-chaos-20180418/

Learn parameterizations from observations

(Courtesy: D. Randall, CSU;

CMMAP).

@ Global-scale CRMs (e.g 7 km simulation on the left) and even
super-parameterization using embedded cloud models (right)
remain prohibitively expensive.

@ Can we learn the statistical aggregate of small scales? See
Schneider et al 2017, Gentine et al (2018), O’Gorman and Dwyer
(2018), Bolton and Zanna (2018), ...

V. Balaji (vbalaji@ipsl.fr) Machine Learning in the Post-Dennard Era 20 February 2019 33/48

(Courtesy: S-J Lin, NOAA/GFDL).


https://www.nature.com/nclimate/journal/v7/n1/full/nclimate3190.html
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2018GL078202
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018MS001351
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018MS001351

Learning sub-gridscale turbulence

Output

Fig 1 from Bolton and Zanna (2018), in review for JAMES.
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Caltech/MIT Earth Machine

4

From Schneider et al 2017.
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https://www.nature.com/nclimate/journal/v7/n1/full/nclimate3190.html

Lorenz 96, a nice abstraction

32
dX he
Ttk:—Xk—1(Xk—2—Xk+1)—Xk+F—?ZYj,k+f (1)

=

ayY; hc

7djt’k = —cbYji1)(Yijok — Yis1k) —CYjk + ?Xk (2)

A nice abstraction of a system with fast and slow modes, whose
coupling strength can be varied... maybe too interesting? See
metastability issues in Schneider et al, GRL (2017).

V. Balaji (vbalaji@ipsl.fr) Machine Learning in the Post-Dennard Era 20 February 2019 36/48


https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2017GL076101

Lorenz 96 with slow and fast forcing

ax he &2
7dtk :—Xk71(Xk72_Xk+1)—XK+F+6FK_? E )/j,k+f (3)
j=1
ay; he
70']1‘7/( = —0bYjr,1(Yisok = Yji1k) = C¥ju + 5 X )

F can be time-varying on a “slow” timescale (e.g GHG forcing) or “fast”
(aerosols). Loosely based on Christensen and Berner (2018).
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Lorenz96 in perfect model setting
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From Schneider et al 2017. Learn Lorenz96 parameters F, h, ¢, b from
prior run.
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https://www.nature.com/nclimate/journal/v7/n1/full/nclimate3190.html

The slow manifold

C;L::VWerVZaU (5)
‘;‘; — _UW — bUZ — aV + aF (6)
aw

= -uv—aw (7)
ax

= —Z-aX (8)
CZ:bUV+X—aZ (9)

U, V, W are derived from vorticity (“Rossby waves”) and X, Z are
derived from divergence and departures from geostrophy (“gravity
waves”).

From Lorenz (1992), The slow manifold — what is it?
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http://eaps4.mit.edu/research/Lorenz/Slow_man_what_92.pdf

Making ML respect known physical constraints

See momentum conservation discussion in Bolton and Zanna (2018),
Applications of Deep Learning to Ocean Data Inference and Sub-Grid

Parameterisation.
Raw Inputs

Determine basis
of invariants

Transform data
given number of
times
Train algorithm Train algorithm on

on invariant transformed data
basis

Evaluate model
performance on
transformed
validation data

From Ling et al, JCP (2016), Machine learning strategies for systems
with invariance properties
V. Balaji (vbalaji@ipsl.fr)
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https://www-sciencedirect-com/science/article/pii/S0021999116301309

Distilling Free-Form Natural Laws from Experimental
Data

Physical System Schematic Experimental Data Inferred Laws
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2.71a + 0.054 — 3.54sin(6)
Equation of motion
(x=77.72) + (v - 106.48)
Circular manifold

e (o)

From Schmidt and Lipson, Science, 2009. My little hommage, Gaitan
et al (2016), Can we obtain viable alternatives to Manning’s equation
using genetic programming? Eureqa software available under license.
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http://science.sciencemag.org/content/324/5923/81
http://www.sciedupress.com/journal/index.php/air/article/view/9305
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Navier-Stokes from data

Full data

Compressed data

From Rudy et al (2017).

1la. Data collection

— |=32=235 ...

1b. Build nonlinear
library of data and
derivatives

gg g w=0O(w,u,v)E

we = 0w, u,0)E

2b. Compressed library
Cw; = CO(w,u,v)§

Sampling

C =| CO

=

1c. Solve sparse
regression
Myg"i"H@E —will3 + Mgl

¥

d. Identified dynamics
wy +0.9931uw, +0.99100w,
= 0009904z + 0.009%wyy
Compare to true
Navier-Stokes (Re = 100)

1
w+ - Vw=—Vu
Re

%

2c. Solve compressed
sparse regression

argmin||COE — Cwy |3 + AllE[lo
£

V. Balaji (vbalaji@ipsl.fr)

Machine Learning in the Post-Dennard Era

20 February 2019

42/48


http://advances.sciencemag.org/content/3/4/e1602614

Other canonical PDEs from data

[ Esvor (o nolse, mofs) |

G+ 00N, 3 4 1

131 1,3%, 521 1A% 0, 100, m = B0, te 0, 1], = 25

x4 — 10, 1 =256, 40, 10], mm =201
aan prhe 1.

From Rudy et al (2017). Works for other canonical PDE systems as

well! (including conservative and non-linear dissipative chaotic
systems.

V. Balaji (vbalaji@ipsl.fr) Machine Learning in the Post-Dennard Era 20 February 2019 43/48


http://advances.sciencemag.org/content/3/4/e1602614

Limitations of training data

(a) Trained on each climate separately (b) Trained on combined climates

Original scheme
— — — Random forest

Fractional change (%K")

Fractional change (%K‘1)

Latitude (degrees) Latitude (degrees)

From O’Gorman and Dwyer, JAMES, 2018. Limitations of training on
short non-stationary time series.
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https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2018MS001351

Error patterns associated with stationarity assumption

August Daily Max Temperatures
for a point in Oklahoma

HI RES (25km) GCM HI RES (25km) GCM
1979-2008 2086-2095 approx. +7C
mean warming

T T T
(2.5C histogram bins)

Errors can be traced with warming outside the temperature distribution
of the training period. Caution needed at distribution tails (“extreme
events”). Dixon et al (2016).
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Where models and data are both weak...

180° 120° W 60° W 0 60°E 120°E 180°

[ T 1
20 -6 -12 -8 -4 0 4 8 12 16 20 24 28 32 36 40

Temperature (°C)

Fig 1 from Valdes (2011). GCMs are unable to simulate the
Paleocene-Eocene climate of 55 My ago.
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Outline

e Ideas and challenges
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Questions: metamodels and supermodels

@ Machine learning and “Al” still is in the positive phase of a hype
cycle (publication bias, reproducibility crisis) but it isn’t all hype. It
is subverting the HPC hardware market.

@ Huge variety of methods!

@ Supermodels: some components replaced by learning agents.
Metamodels: low-dimensional emulators.

@ Fundamental questions still unanswered:

e Are model-free methods useful?

How do we derive the invariant basis of a complex system?

Can we use ML to derive the functional form of a slow manifold?

Can we derive a useful model hierarchy?

Can this metamodel be used for parameter uncertainty exploration?

How much physical knowledge (e.g conservation laws) must be

embedded in the ML? What if the embedded knowledge is

incorrect? (“It's not what you don’t know, it's what you know for sure
that just ain’t so”, Mark Twain never said.)

e What happens to supermodels as the features of the training data
evolve?

V. Balaji (vbalaji@ipsl.fr) Machine Learning in the Post-Dennard Era 20 February 2019 48/48


http://science.sciencemag.org/content/359/6377/725

	Hardware evolution at the end of Dennard scaling
	The end of Dennard scaling
	Specialized and commodity computing
	Deep learning is an industry driver

	Challenges in model development
	No separation of scales
	Calibration of coupled systems

	Applications of machine learning
	Learning parameterizations from high-resolution simulations
	Learning low-order manifolds for uncertainty exploration

	Ideas and challenges

