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Contexte scientifique     :  

Precipitation forecasting at a short and mid-term horizon, also named rain nowcasting, is a 
complicated problem in Numerical Weather Prediction due to the high non-stationarity of the rain 
processes. Real life applications for example address severe events anticipation [1] (short term 
horizon, lower than 2 hours) or agriculture management [2] (longer horizon, up to 4 hours). 
Traditionally and in operational center, forecasts are produced based on the combination of physics-
based numerical models and observations (e.g. from radar, satellite), this method is called Data 
Assimilation [3, 4]. Basically, it estimates the motion field in order to advect observed storm cells. 
But the creation/dissipation process of these cells is not well understood and hard to model. 
However, over the past decade, Machine learning and more precisely Deep Learning have shown 
great abilities to model complex spatio-temporal dependencies [5] that usually require the use of 
differential equations. We aim at comparing traditional methods with fully data-driven ones and 
eventually combining them.
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Objectifs     :  

The main goal of the internship is to learn a model on rainfall records provided by the Météo France
radar  network (e.g.  PANTHERE data).  Even though we may try different architectures,  we are
particularly interested in convolutional-recurrent networks presented in [6, 7] as they are primarily
applied  on  rain  nowcasting.  Indeed,  dealing  with  rain  data  could  be  sensitive  as  precipitation
measures are sparse in space and time. We should define an evaluation procedure to first select our
learned  networks  and  then  comparing  them  to  variational  data  assimilation  methods  already
available, criterion can be multiple.
In a second step and depending on the results, we would try to incorporate physical knowledge into
our model which is a relatively open topic [8, 9, 10]. We could consider hybrid modelling within a
variational data assimilation scheme [11, 12] connecting the work of a phd student.
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Compétences souhaitées     :  

• Machine Learning, Deep learning, Signal processing, Data Analysis
• Python programming, Pytorch is a plus
• Interest for climate applications

Autres     :   the intern will have the opportunity to participate in AI4C / SCAI seminars 

https://scai.sorbonne-universite.fr/
https://ai4climate.lip6.fr/category/seminars/

