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Motivations

We love (theoretical) compromise,

Simple solutions are often sufficient (and sometimes even better),
Deep Learning is popular and powerful,
Has the earth ever been this hot before?
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Source here
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https://commons.wikimedia.org/wiki/File:20200324_Global_average_temperature_-_NASA-GISS_HadCrut_NOAA_Japan_BerkeleyE.svg


Mean shift VS Distribution shift (NOAA Dataset)

data
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https://www.ncei.noaa.gov/data/global-summary-of-the-day/access/
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Source here

Sébastien Loustau (shortinst) Power-efficient Deep Learning October 15, 2020 6 / 68

https://gmd.copernicus.org/articles/13/3571/2020/gmd-13-3571-2020-discussion.html
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Motivations

We love (theoretical) compromise,
Simple solutions are often sufficient (and sometimes even better),
Deep Learning is popular and powerful,
Has the Earth Ever Been This Hot Before? It sucks.
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1 What is Power-Efficient Deep Learning

2 Mathematical framework and General Procedure

3 Bregman divergences and Optimal Transport

4 Discussion
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Binary Nets, Quantization

A general way of creating new Power-efficient Deep Learning is to reduce
the number and the cost of MAC (multiply-and-accumulates) operations:

In [1] Binaryconnect, Binarized NNs are trained with SGD (binary
weights are used during the forward and backward propagations but
real-valued weights are stored for SGD updates) on MNIST,
CIFAR-10 and SVHN,
In [2, 3] XNOR-nets are trained (binary weights and activations for
propagations) with the same SGD real-valued updates,
Quantization of weights (see [4] for references and a study on the
compromise between precision and large size network).

From a Machine Learning perspective, both training and inference of
well-known architectures can be lightened by acting on the weights and
I/O spaces.
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CNNs Accelerators on hardware

Many papers implements CNNs accelerators on field-programmable gate
arrays (FPGAs) or on Application Specific Integrated Circuits (ASICs)
leading to ultra-low power CNNs acceleration:

Binaryconnect on ASIC, see [5],
Hardware accelerators on FPGAs such as XNOR-Nets, see [6],
Efficient inference processing of CNNs on many different platforms
with bit-wise identical results (ASIC and FPGA-based designs, but
also kernel computation on CPU and GPU), see [7].

Many trade-offs between many criterion are possible to have a complete
picture of the proposed designs and techniques (accuracy, number of MAC
operations, throughput/latency and power/energy consumption).
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Automation and Mobile phone

The problem of designing efficient neural networks lead finally to search for
device-specific CNNs and finally automated machine learning
(www.auto-ml.org) and Neural Architecture Search (NAS, see [8]).

Several papers apply these considerations to design Mobile nets (see also
chamnet for CPU/GPU:

[9, 10] propose to use NAS neural architecture to construct hardware
efficient CNNs for mobile phones,
[11] uses several budgeted super networks to predict well in less than
100 milliseconds or to learn efficient models in terms of memory (for
instance models that fit in a 50Mb memory),
[12] uses hierarchical neural ensemble to reduce FLOPS and control
dynamically the inference latency.

In what follows, we intent to build a new theoretical-based approach
that reaches these kind of trade-offs.
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Energy consumption of Deep Learning

Performance counters (PMCs) are used to estimate power or energy
consumptions of Deep Learning:

[13] provides a layer by layer energy measurements and estimation for
usual convnets for imagenet,
[14] proposes a survey on energy estimation models for machine/deep
learning at three levels (application and instruction level for software)
and hardware level, and practical study comparing mobilenet to
standard Inception-V3 on a ARM Cortex-A57 thanks to SyNERGY,
[15] proposes PowerAPI a software to monitore in real time the
energy consumption of a program.
[16] quantifies the carbon emission of many GP-GPU.
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Energy consumption of Deep Learning

AlexNet to AlphaGo Zero: A 300,000x Increase in Compute

1860 ∗ 1015 ∗ 86400 = 1.607e + 23
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https://openai.com/blog/ai-and-compute/
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