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Motivation



Statistical Dependence vs Causation

Consider the following setup:

• You have a lawn with a sprinkler.

• If the sprinkler is on, the lawn will become wet.

• Each day you toss a coin and turn the sprinkler on if it shows heads.

Two easy questions:

• Does turning on the sprinkler cause the lawn to be wet?

• Does making the lawn wet turn the sprinkler on?
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Statistical Dependence vs Causation

Consider the following setup:

• You have a lawn with a sprinkler.

• If the sprinkler is on, the lawn will become wet.

• Each day you toss a coin and turn the sprinkler on if it shows heads.

Two easy questions:

• Does turning on the sprinkler cause the lawn to be wet? Yes!

• Does making the lawn wet turn the sprinkler on? No!
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Statistical Dependence vs Causation

How does this relate to statistical dependence?

We can model the setup with two random variables:

X : X = 1 if the sprinkler is on, else X = 0

Y : Y = 1 if the lawn is wet, else Y = 0

Since turning the sprinkler on causes the lawn to be wet, we get

P(lawn wet|sprinkler on) = P(Y = 1|X = 1)

> P(Y = 1) = P(lawn wet) .

This shows that X and Y are dependent random variables.

However, the dependence also goes in the other direction. Observing the

lawn to be wet increases the probability that the sprinkler is on:

P(sprinkler on|lawn wet) = P(X = 1|Y = 1)

> P(X = 1) = P(sprinkler on) .

The probabilities alone do not allow us to decide wheter X causes

Y or Y causes X
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Conceptual Findings

• Statistical dependence is symmetric between cause and effect, i.e., it

does not distinguish between cause and effect

• Causation is asymmetric between cause and effect, i.e., it does

distinguish between cause and effect

• Statistical dependence is not causation.
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Observational Causal Inference



Causal Inference

What causal inference is about:

• Provide mathematical language for causal notions such as cause and

effect

• Provide methods and assumptions for answering causal questions

from observational data

• Provide methods and assumptions for learning parts of the causal

relationships from observational data
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Randomized Control Trials

Question:

How can one, in general, determine whether a certain drug is helpful in

reducing the risk of developing a certain desease?

Randomized control trials:

Randomly assign the subjects to the treatment and control group.

The gender of a subject does not longer influence whether a subject

belongs to the treatment or control group.
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Experimentation

Abstraction of the question:

Consider two events or variables X and Y . How can we determine

whether X causes Y ?

Experimentation:

Experimentally manipulate X while keeping all other conditions exactly

the same. If this results in a change of Y , X causes Y .

Such an idealization of experimental manipulation is referred to as an

intervention on X .

Example: Lawn with sprinkler

• Turning the sprinkler on makes the lawn wet.

• Making the lawn wet does not turn on the sprinkler.
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Experimentation

Abstraction of the question:

Consider two events or variables X and Y . How can we determine

whether X causes Y ?

Experimentation:

Experimentally manipulate X while keeping all other conditions exactly

the same. If this results in a change of Y , X causes Y .

Such an idealization of experimental manipulation is referred to as an

intervention on X .

Example: Lawn with sprinkler

• Turning the sprinkler on makes the lawn wet.

• Making the lawn wet does not turn on the sprinkler.

We need to imagine the lawn being made wet without changing

something else, in particular without turning the sprinkler on

5



Challenges in Context of Climate Sciences
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Challenges in Context of Climate Sciences

When trying to apply these concepts in the context of climate sciences,

we face two fundamental challenges.

Challenge: Experimentation in real climate not possible

For most parts it is impossible, and else arguably ethically questionable,

to deliberately intervene on climate variables.

Challenge: Ground truth not known

Causal relationships are mostly known among microscopic physical

variables, but usually less so among macroscopic variables.

For example:

• Is there a causal relationship between arctic sea ice extent in winter

and mid latitude weather in summer?

• Is there a causal relationship between ENSO and extreme weather

events somewhere on Earth?
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Two Approaches to Address These Challenges

Simulation:

Experimentation in climate models: Fix (intervene on) certain parameters

and analyze the resulting effect on other parameters.
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Two Approaches to Address These Challenges

Simulation:

Experimentation in climate models: Fix (intervene on) certain parameters

and analyze the resulting effect on other parameters.

Observational causal inference:

Answer causal questions, for example questions about cause and effect,

from observation data.

Seminal work by Judea Pearl, Peter Spirtes, Clark Glymour, Richard

Scheines.
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Two Approaches to Address These Challenges

Simulation:

Experimentation in climate models: Fix (intervene on) certain parameters

and analyze the resulting effect on other parameters.

Observational causal inference:

Answer causal questions, for example questions about cause and effect,

from observation data.

To mathematically treat causal inference, we need to formalize the idea

of an underlying structural causal model (SCM), define hypothetical

interventions, and establish identifiability criteria to decide if and how

causal effects can be estimated from data alone (without interventions).
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Structural Causal Models

Intuition:

A structural causal model (SCM) specifies the functional causal

relationships between a set of random variables.

Example:

Xaerosols := faerosols(Xenv. facs., ηaerosols)

Xclouds := fclouds(Xaerosols,Xenv. facs., ηclouds)

Xenv. facs. := fenv. facs.(ηenv. facs.) Aerosols Clouds

Environmental
factors

Claims of an SCM:

• Specifies the direct causes, also called parents, of each variable

• The functions fi are independent mechanisms by which nature

determines the values of each variable based on the values of its

direct causes plus random fluctuations
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Structural Causal Models

Definition:

A structural causal model over the set of random variables

X = {X1, . . . ,Xn} consists auf n structural assignments

X1 := f1(PA1, η1)
...

Xn := fn(PAn, ηn)

together with a specification of the probability distributions of the jointly

independent ‘noise’ variables ηi . Here PAi ⊆ X \ {Xi} are the direct

causes of Xi .

Here we also assume that there are no cyclic dependencies.

Interpretation of noise variables:

• Summarize all background factors outside causal model, i.e., all

factors apart from X1, . . . ,Xn

• Their joint independence means the model is sufficient to describe

the causal relationship among the variables X1, . . . ,Xn
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Causal Graphs

Definition:

Consider an SCM over the variables X = {X1, . . . ,Xn}. Its causal graph

G is the directed graph with

1. a vertex (node) for each variable Xi

2. for all i a directed edge from each variable Xj ∈ PAi to Xi

Example:

Xaerosols := faerosols(Xenv. facs., ηaerosols)

Xclouds := fclouds(Xaerosols,Xenv. facs., ηclouds)

Xenv. facs. := fenv. facs.(ηenv. facs.) Aerosols Clouds

Environmental
factors

Interpretation:

• Nodes represent variables

• Edges represent causal influences
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Interventions

Definition:

Consider SCM over the variables X = {X1, . . . ,Xn}.

An intervention on Xi , denoted as do(Xi := xi,0), defines a modified

SCM obtained by replacing the old assignment of Xi with Xi := xi,0
where xi,0 is some value in the range of Xi :

X1 := f1(PA1, η1)
...

Xi := xi,0
...

Xn := fn(PAn, ηn)

Interpretation:

• An intervention do(Xi := xi,0) inactivates the natural mechanism

Xi := fi (PAi , ηi ) by forcing Xi to take the value xi,0
• All other mechanisms remain unmodified

• Interventions can also be more complex functions than just xi,0
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The causal graph of the intervened SCM is obtained from the causal

graph of the original SCM by deleting all arrows pointing into Xi .
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Interventions

Interventions model the notion of ‘experimentally manipulate Xi

while keeping all other conditions exactly the same’

Effect on causal graphs:

The causal graph of the intervened SCM is obtained from the causal

graph of the original SCM by deleting all arrows pointing into Xi .

Example:

After intervention do(Xaerosols) := a certain aerosol concentration:

Xaerosols := a certain aerosol concentration

Xclouds := fclouds(Xaerosols,Xenv. facs., ηclouds)

Xenv. facs. := fenv. facs.(ηenv. facs.)

Environmental
factors

CloudsAerosols
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Identification of Causal Effects

General formalism:

• Formally define the notion of a causal effect where generally

P(Y |do(X := x)) 6= P(Y |X = x).

• Based on the causal graph, decide whether the causal effect of X on

Y can be identified from the observational data.

• If the effect can be identified, express causal effect in terms of

observational data

Here: Convey idea through examples.
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Identification of Causal Effects

Example 1: No confounding

Consider the linear SCM:

Z := ηZ , ηZ ∼ N (0, σ2
Z )

X := ηX , ηX ∼ N (0, σ2
X )

Y := a · X + b · Z + ηY , ηY ∼ N (0, σ2
Y )

Goal: Determine a, the causal effect of X on Y

Idea: Use covariance of Y on X

Cov
(
Y ,X

)
= Cov

(
a · ηX + b · ηZ + ηY , ηX ,

)
= a · Cov(ηX , ηX ) + b · Cov(ηZ , ηX ) + Cov(ηY , ηZ )

= a · Var(X ) + b · 0 + 0

⇒ a =
Cov(Y ,X )

Var(X )
= ρ(Y ,X ) ·

√
Var(Y )

Var(X )

a is the coefficient of X in the linear regression of Y on X
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Identification of Causal Effects

Example 2: Observed confounding

Consider the linear SCM:

Z := ηZ , ηZ ∼ N (0, σ2
Z )

X := c · Z + ηX , ηX ∼ N (0, σ2
X )

Y := a · X + b · Z + ηY , ηY ∼ N (0, σ2
Y )

Goal: Determine a, the causal effect of X on Y

First attempt: Linearly regress of Y on X

Cov
(
Y ,X

)
= Cov

(
(a · c + b) · ηZ + a · ηX + ηY , c · ηZ + ηX

)
= c · (a · c + b) · Cov(ηZ , ηZ ) + a · Cov(ηX , ηX )

Var(X ) = Cov(c · ηZ + ηX , c · ηZ + ηX )

= c2 · Cov(ηZ , ηZ ) + Cov(ηX , ηX )

⇒ a 6= Cov(Y ,X )

Var(X )

18
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Identification of Causal Effects

Example 2: Observed confounding

Second attempt:

• Control for Z : Regress out influence of Z on

X and Y to obtain residuals ∆X and ∆Y

• Linearly regress ∆Y on ∆X

∆X = X − Cov(X ,Z )

Var(Z )
· Z

= X − c · Cov(ηZ , ηZ )

Cov(ηZ , ηZ )
· Z

= X − c · Z
= ηX

∆Y = Y − Cov(Y ,Z )

Var(Z )
· Z

= Y − (a · c + b)Cov(ηZ , ηZ )

Cov(ηZ , ηZ )
· Z

= X − (a · c + b) · Z
= a · ηX + ηY

⇒ a =
Cov(∆Y ,∆X )

Var(∆X ,∆X )
=

a · Cov(ηX , ηX )

Cov(ηX , ηX )
= a
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Identification of Causal Effects

Example 3: Partial mediation

Consider the linear SCM:

X := ηX , ηX ∼ N (0, σ2
X )

Z := a · X + ηZ , ηZ ∼ N (0, σ2
Z )

Y := b · Z + c · X + ηY , ηY ∼ N (0, σ2
Y )

Total causal effect of X on Y : (a · b + c)

• Linearly regress Y on X

Direct causal effect of X on Y : c

• Multivariate regression of Y on its parents (X ,Z ), then take

coefficient belonging to X
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Conceptual Findings

• Interventions model the notion of ‘experimentally manipulate Xi

while keeping all other conditions exactly the same’.

• The causal graph allows us to decide whether a certain causal effect

is identifiable.

• If the causal effect is identifiable, the causal graph further allows us

to estimate it from observational data.
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Overview: Identification of Causal Effect

Example: Observed confounder

X Y

Z
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Overview: Identification of Causal Effect

Example: Observed confounder

X Y

Z

Control for confounder Z
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Overview: Identification of Causal Effect

Example: Mediation

X YZ
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Example: Mediation

X YZ
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Overview: Identification of Causal Effect

Example: Mediation

X YZ

Do not control for mediator Z
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Overview: Identification of Causal Effect

Example: Unobserved confounder

X Y

L unobserved

Causal effect cannot be identified
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Overview: Identification of Causal Effect

Example: Common effect

X Y

S
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Overview: Identification of Causal Effect

Example: Common effect

X Y

S

22



Overview: Identification of Causal Effect

Example: Common effect

X Y

S

Do not control for common effects of X and Y , this would

introduce bias.

However, sometimes the available dataset is already biased, e.g., if

samples are missing (selection bias).
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Overview: Identification of Causal Effect

Example: Complicated case

Z2

Z1

Y
X

L1

Z4

Z3

L2

Back-door criterion:

Block all non-causal dependence by controlling for an appropriate

set of variables

22



Back-door adjustment

Back-door criterion

A set Z ⊂ X \ {X ,Y } satisfies the back-door criterion for identifying the

causal effect of X on Y if

1. Z blocks all paths between X and Y with arrow into X

2. No element in Z is a descendant of X

Z2

Z1

Y
X

L1

Z4

Z3

L2
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Back-door adjustment

Back-door criterion

A set Z ⊂ X \ {X ,Y } satisfies the back-door criterion for identifying the

causal effect of X on Y if

1. Z blocks all paths between X and Y with arrow into X

2. No element in Z is a descendant of X

Z2

Z1

Y
X

L1

Z4

Z3

L2
Z5
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Back-door adjustment

Back-door criterion

A set Z ⊂ X \ {X ,Y } satisfies the back-door criterion for identifying the

causal effect of X on Y if

1. Z blocks all paths between X and Y with arrow into X

2. No element in Z is a descendant of X

Theorem: Back-door adjustment as a sufficient criterion

If Z satisfy the back-door criterion for (X ,Y ), then

p(y |do(x)) =
∑

z

p(y |x , z) · p(z)
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Overview: Identification of Causal Effect

Example: Unobserved confounder plus mediation

X YZ

L unobserved

Front-door criterion:

Allows to identify causal effect, but not as simple as controlling for

a certain set of variables
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Observational Causal Discovery



How to Get Causal Graphs

Relevance: Result of previous section

Knowing the causal graph of the data generating process, we can

determine whether and how a causal effect can be identified from

observational data

How to get the causal graph?

Option 1: Scientific knowledge

Talk to domain experts, general reasoning

Option 2: Observational causal discovery

Learn from observational data

25



How to Get Causal Graphs

Relevance: Result of previous section

Knowing the causal graph of the data generating process, we can

determine whether and how a causal effect can be identified from

observational data

How to get the causal graph?

Option 1: Scientific knowledge

Talk to domain experts, general reasoning

Option 2: Observational causal discovery

Learn from observational data

25



How to Get Causal Graphs

Relevance: Result of previous section

Knowing the causal graph of the data generating process, we can

determine whether and how a causal effect can be identified from

observational data

How to get the causal graph?

Option 1: Scientific knowledge

Talk to domain experts, general reasoning

Option 2: Observational causal discovery

Learn from observational data

25



Causal Graphs and (Conditional) Independencies

Fact:

The structure of the causal graph often has observable implications in

terms of (conditional) independencies in the observed data.

Intuition:

• Statistical dependencies derive from causal relationships

• Conditioning can block and open the ‘flow of information’

Example 1: Chain

• X1 influences X2: X1��⊥⊥X2

• X2 influences X3: X2��⊥⊥X3

• X1 influences X3 through X2: X1��⊥⊥X3

• Knowing X2, X1 does not say more about X3: X1 ⊥⊥ X3|X2
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Causal Graphs and (Conditional) Independencies

Example 2: Fork

• X2 influences X1: X1��⊥⊥X2

• X2 influences X3: X2��⊥⊥X3

• Observing X1 says something about X2 and hence

about X3: X1��⊥⊥X3

• Knowing X2, X1 does not say more about X3: X1 ⊥⊥ X3|X2
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Causal Graphs and (Conditional) Independencies

Example 3: Collider

• X1 influences X2: X1��⊥⊥X2

• X3 influences X2: X2��⊥⊥X3

• No influence between X1 and X3: X1 ⊥⊥ X3

• Observing X2 introduces selection bias between

X1 and X3: X1��⊥⊥X3|X2

28



Causal Graphs and (Conditional) Independencies

Example 3: Collider

• X1 influences X2: X1��⊥⊥X2

• X3 influences X2: X2��⊥⊥X3

• No influence between X1 and X3: X1 ⊥⊥ X3

• Observing X2 introduces selection bias between

X1 and X3: X1��⊥⊥X3|X2

28



Causal Graphs and (Conditional) Independencies

Example 4: Disconnected variables

• No influence between X1 and X3: X1 ⊥⊥ X3
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Causal Graphs and (Conditional) Independencies

General rule: d-separation

The graphical criterion of d-separation allows to read off all (conditional)

independencies implied by the structure of a particular causal graph.

Example 5: Complicated case

Some independencies implied by d-separation

• X ⊥⊥ Y |Z 1,Z 2

• X ⊥⊥ Y |Z 3
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Constraint Based Causal Discovery

Idea:

• Perform statistical tests of (conditional) independence in

observational data

• Use test results to constrain the structure of the causal graph

Example 1:

Test decisions:

• X1��⊥⊥X2

• X2��⊥⊥X3

• X1��⊥⊥X3

• X1 ⊥⊥ X3|X2

Possible causal graphs:

observationally equivalent graphs
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Constraint Based Causal Discovery

Idea:

• Perform statistical tests of (conditional) independence in

observational data

• Use test results to constrain the structure of the causal graph

Example 2:

Test decisions:

• X1��⊥⊥X2

• X2��⊥⊥X3

• X1 ⊥⊥ X3

Possible causal graphs:

observationally equivalent graphs
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Constraint Based Causal Discovery

Idea:

• Perform statistical tests of (conditional) independence in

observational data

• Use test results to constrain the structure of the causal graph

Example 2:

Test decisions:

• X1��⊥⊥X2

• X2��⊥⊥X3

• X1 ⊥⊥ X3

Possible causal graphs:

observationally equivalent graphs
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Required Assumptions

Recall:

Causal questions cannot be answered from observational data without

making any additional assumptions.

Assumption 1: Existence of SCM

The data generating process can be described as an SCM. This implies

the so called causal Markov condition:

d-separation in causal graph ⇒ (conditional) independence

Assumption 2: Faithfulness

(conditional) independence ⇒ d-separation in causal graph

Assumption 3: Causal sufficiency

There are no unobserved confounders and there are no selection variables.

Assumption 3 can be dropped (but much more complicated)

Assumption 2 can be relaxed
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Some Famous Algorithms

SGS-Algorithm:

Tests all possible (conditional) independence statements, use results to

constrain the causal graph as discussed in the examples.

SGS stands for Spirtes, G lymour, and Scheines.

PC-Algorithm:

Based on SGS-Algorithm, but using much fewer conditional independence

tests.

PC stands for Peter Spirtes and C lark Glymour.

FCI-Algorithm:

Similar to the PC-Algorithm, but without requiring the assumption of

causal sufficiency, i.e., allowing for hidden confounders and selection

variabes.

FCI stands for f ast causal inference.
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Two Main Approaches of Causal Discovery

Constraint-based causal discovery:

Constrain causal graph by using results of conditional independence tests

in observational data.

⇒ discussed today

SCM-based causal discovery:

Make assumption on functional causal relationships (e.g., linear or

non-linear) and noise distributions (e.g., Gaussian or non-Gaussian) of

data generating SCM.

Generically, model can fit in one direction only. This allows to identify

direction of causal influence.

⇒ not discussed today
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Causal Discovery in Time Series

X1

X2

X3

X 4

N

36



Causal Discovery in Time Series

X1

X2

X3

tt−1t−2

X 4

t−3

N

τmax

36



Causal Discovery in Time Series

X1

X2

X3

tt−1t−2

X 4

t−3

N

τmax

36



Causal Discovery in Time Series

X1

X2

X3

tt−1t−2

X 4

t−3

N

τmax

36



Causal Discovery in Time Series

X1

X2

X3

tt−1t−2

X 4

t−3

N

τmax

36



Causal Discovery in Time Series

X1

X2

X3

tt−1t−2

X 4

t−3

N

τmax

1

2

1 1

Summary/process
graph
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Causal Discovery in Time Series

tt−1t−2t−3

τmax
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Causal Discovery in Time Series

X1
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Parents
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Causal Discovery in Time Series

Observations in time make things easier:

• Additional constraint: Causation cannot go back in time.

Observations in time make things harder:

• High dimensionality: Resolving in time increases the number of

variables

• Statistical issues: Autocorrelation makes conditional independence

tests statistically harder

X1

X2

X3

tt−1t−2

X 4

t−3

N

τmax

Parents
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Causal Discovery in Time Series

Observations in time make things harder:

• High dimensionality: Resolving in time increases the number of

variables

• Statistical issues: Autocorrelation makes conditional independence

tests statistically harder

PCMCI-Algorithm:

Adaption of the PC-algorithm to time series in which these challenges are

addressed.

LPCMCI-Algorithm:

Generalization of PCMCI that allows for hidden confounders.
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Alternative Concept: Granger Causality

Idea:

X causes Y if the past of X helps in predicting the Y from its own past.

Limitations:

• Requires causal sufficiency

• Does not allow contemporaneous interactions

39



State of the art: see Runge et al. NatComm 2019

b Nonlinear state-space methods

c Causal network learning algorithms

(X(t), Y(t), Z(t))

(Y(t), Y(t-d), Y(t-2d))(X(t), X(t-d), X(t-2d))

M

M
X MY

tt−1t−2

X

Y

Z

W

tt −1t−2 tt−1t−2

Orientation phase

tt−1t−2

Skeleton discovery phase

p=0 p=1 p=2

d Structural causal models

X t=f (Y t , E t
X
)

Y t=g (X t , E t
Y
)

r t
X

r t
Y

Y t

Xt

Y t

Xt

Linear Non-Gaussian Acyclic Model

a Granger causality

Yt = ∑p
τ=1

 βτ Yt-τ + ατ Xt-τ + E
t
Y    (1)

Yt = ∑p
τ=1

 β’τ Yt-τ + E’
t
Y                   (2)
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Real world challenges: see Runge et al. NatComm 2019

Challenges

Process:
1     Autocorrelation
2     Time delays
3     Nonlinear dependencies
4     Chaotic state-dependence
5     Different time scales
6     Noise distributions

Data:
7     Variable extraction
8     Unobserved variables
9     Time subsampling
10   Time aggregation
11   Measurement errors
12   Selection bias
13   Discrete data
14   Dating uncertainties

Computational / statistical: 
15   Sample size
16   High dimensionality
17   Uncertainty estimation

X

Y

U

Z

7

3

7

15

16

17

8

7 months

1

2

10

5

W

4 6

X

Y

9
t−1t−2t−3t−4t−5 t

11 12

14

13

tt−1t−2t−3

X

Y

X

Y
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Application examples



Application cases

• Testing causal hypotheses

[Runge et al., 2014, Runge et al., 2015b, Kretschmer et al., 2016,

Runge et al., 2019b, Kretschmer et al., 2018, Runge et al., 2018,

Runge et al., 2019a, Krich et al., 2020]

• Optimal statistical prediction schemes

[Runge et al., 2015a, Kretschmer et al., 2017, Di Capua et al., 2019]

• Evaluating climate/physical models

[Schleussner et al., 2014, Nowack et al., 2019]

42



Application cases

• Testing causal hypotheses

[Runge et al., 2014, Runge et al., 2015b, Kretschmer et al., 2016,

Runge et al., 2019b, Kretschmer et al., 2018, Runge et al., 2018,

Runge et al., 2019a, Krich et al., 2020]

• Optimal statistical prediction schemes

[Runge et al., 2015a, Kretschmer et al., 2017, Di Capua et al., 2019]

• Evaluating climate/physical models

[Schleussner et al., 2014, Nowack et al., 2019]

42



Application cases

• Testing causal hypotheses

[Runge et al., 2014, Runge et al., 2015b, Kretschmer et al., 2016,

Runge et al., 2019b, Kretschmer et al., 2018, Runge et al., 2018,

Runge et al., 2019a, Krich et al., 2020]

• Optimal statistical prediction schemes

[Runge et al., 2015a, Kretschmer et al., 2017, Di Capua et al., 2019]

• Evaluating climate/physical models

[Schleussner et al., 2014, Nowack et al., 2019]

42



Reconstructing Walker Circulation

• Monthly surface pressure anomalies in the

West Pacific (WPAC), surface air temperature

anomalies in the Central Pacific (CPAC) and

East Pacific (EPAC)

• Correlation analysis gives a completely

connected graph

• Also bivariate Granger Causality cannot

remove indirect and common driver links

• PCMCI [Runge et al., 2019b] better identifies

the Walker circulation

Runge et al. Nat. Comm. (2019)
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Space physics

• Hypothesis on interaction between

magnetospheric Auroral Electrojet

index (AL), magnetospheric ring

current strength (SYM-H), and solar

wind parameters

• Mutual information analysis gives

many dependencies

• Transfer Entropy cannot remove

indirect and common driver links

• PCMCI yields novel insight that solar

wind is common driver of

magnetospheric indices

Runge et al. Sci. Rep. (2018), ∆t = 20min

resolution
44
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Causal mediation analysis

• Pathway mechanisms by which El Nino

influences Indian monsoon through

sea-level pressure system

• Mediated Causal Effect (MCE)

quantifies how much an intermediate

variable (node) contributes to a causal

effect

• Linear path analysis (early approach

due to Sewall Wright in 1920s)

• Nonlinear extension in Runge Physical

Review E (2015)

Runge et al. Nat. Comm. (2015)
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Causal complex network analysis

• Complex network measures based on

extracted causal network from sea-level

pressure system

• Global causal gateways based on

Average Causal Effect (ACE)

• Here well represents tropical

atmospheric uplift regions

• Global causal mediators based on

Mediated Causal Effect (MCE)

Runge et al. Nat. Comm. (2015)
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Causal model evaluation (Nowack et al., 2020)

Motivation: Simple statistics (e.g. mean, variance, trends) can be right

for the wrong reasons

Real world 
processes

Modeled 
processes

Observed variable Modeled variable
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Idea: Compare climate models and observations in terms of causal rela-

tionships
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Causal model evaluation (Nowack et al., 2020)

First results: CMIP5 simulations (historical and preindustrial) vs

NCEP/NCAR reanalysis data of regional 3-day-mean sea level pressure
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Causal model evaluation (Nowack et al., 2020)

Validation: Similar climate models have similar causal networks; F-score

as network comparison metric
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Causal model evaluation (Nowack et al., 2020)

Model evaluation: Significant differences in comparison to reanalysis
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Causality benchmark platform



Causality benchmark platform CauseMe.net

Joint work with Jordi Munoz-Mari and Gustau Camps-Valls (U Valencia)
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Summary

• Causal inference:

Answering causal questions from empirical data

• Two settings:

1. Causal graph assumed known → estimate causal effects

2. Causal graph unknown → causal discovery (→ then causal effects)

• Causal inference requires assumptions

• Underlying SCM / Causal Markov Condition

• Faithfulness (for causal discovery)

• Potentially causal sufficiency

• Assumptions on dependency types (linearity, etc) and distributions

• Time series data: time order, stationarity, ...

• These assumptions can sometimes not be tested from the same

data or even any empirical data

• Causal conclusions require to

• state assumptions and explain reasons for believing them

• and to indicate how conclusions are altered for different assumptions

49
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Thank you! Questions?

• Nature Comm. Perspective on causal discovery in time series

[Runge et al., 2019a]

• Causal inference: full theory [Pearl, 2000], primer

[Pearl et al., 2016], linear models [Pearl, 2013], popular science book

[Pearl and Mackenzie, 2018]

• Causal discovery: general [Spirtes et al., 2000], for time series

[Runge, 2018a, Runge et al., 2019a]

• Restricted SCMs [Peters et al., 2017]

• PCMCI [Runge et al., 2019b] in Science Advances

• PCMCI+ [Runge, 2020] in UAI

• LPCMCI [Gerhardus and Runge, 2020] in NeurIPS

• My software: jakobrunge.github.io/tigramite

50
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Causal discovery in a nutshell [Spirtes et al., 2000]

• Observed dependence: Possible causal models?

• Causal Markov Condition: statistical dependence

=⇒ causal connectedness

• Observed conditional independence: X ⊥⊥ Y | Z
• Faithfulness assumption: statistical independence

=⇒ no causal connectedness

• Markov equivalence: Cannot distinguish graphs

• Suppose V⊥⊥W , X⊥⊥Y |Z , X⊥⊥V |Z ,

X⊥⊥W |Z , Y⊥⊥V |Z , Y⊥⊥W |Z , but all others are

dependent (X��⊥⊥Y , X��⊥⊥W , Y��⊥⊥W , etc.)

X Y

• Which causal models explain these? (assuming no unobserved

variables = latents)

• Only possible model

• Causal inference methods use (some of) these assumptions
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Causal Markov Condition



Pseudo-indeterministic causal graphs

A causal graph G = (X, E) is pseudo-indeterministic for a population, if

and only if G is not a deterministic causal structure for the population

and there exists a causal graph G′ for the population over a set of

variables X′ that properly includes X such that

1. G′ is a deterministic causal structure for the population

2. If X and Y are in X, then X → Y is in E if and only if X → Y is in

E ′

3. No variable in X is a cause of a variable in X′ \ X

4. No variable in X′ \ X is a common cause of two variable in X

X Y Z
G
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Causal Markov Condition

The joint distribution P(X) obeys Global Markov condition on G iff for

all disjoint subsets X i , X j , S ⊂ X,

X i ./ X j | S =⇒ X i ⊥⊥ X j | S (1)

X i
��⊥⊥X j | S =⇒ X i

��./X
j | S (contraposition)

Separation implies independence and dependence implies connectedness.

D-separation (for DAGs) characterizes all and only the conditional

independence relations that follow from satisfying the Markov condition.

• Probability distributions for pseudo-indeterministic systems (in which

the exogenous variables are independently distributed) satisfy the

Markov Condition

• Macroscopic systems are (mostly) deterministic, but in practice we

never have access to all of the causally relevant variables affecting a

macroscopic system → if we include enough variables so that the

excluded variables are probabilistically independent of one another,

then our model will satisfy the Markov Condition
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Causal Markov Condition

The Markov Condition holds for most systems, some arguable exeptions

(plato.stanford.edu):

Artificial variables: Suppose X ,Y ,Z are

independent and causally unrelated. Now

define U = X + Y and W = Y + Z . Then

U and W will be dependent, even though

there is no causal relation between them.
X Y Z
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Causal Markov Condition

The Markov Condition holds for most systems, some arguable exeptions

(plato.stanford.edu):

Coarse grained variables: Suppose

X ,Y ,Z are continuous variables, Z is a

common cause of X and Y , and neither X

nor Y causes the other. Suppose we replace

Z with a coarser variable, Z ′. Then we

would not expect Z ′ to screen X off from

Y . The value of X may well contain

information about the value of Z beyond

what is given by Z ′, and this may affect the

probability of Y .
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Coarse grained variables: Suppose

X ,Y ,Z are continuous variables, Z is a

common cause of X and Y , and neither X

nor Y causes the other. Suppose we replace

Z with a coarser variable, Z ′. Then we

would not expect Z ′ to screen X off from

Y . The value of X may well contain

information about the value of Z beyond

what is given by Z ′, and this may affect the
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Causal Markov Condition

The Markov Condition holds for most systems, some arguable exeptions

(plato.stanford.edu):

Quantum systems: EPR

(Einstein-Podolsky-Rosen) set-up: two

singlet particles are perfectly anti-correlated

even if they are sufficiently far away from

each other that it is impossible for one

outcome to causally influence the other.

Either the Causal Markov condition or

locality principle must be wrong.



Causal Markov Condition

The Markov Condition holds for most systems, some arguable exeptions

(plato.stanford.edu):

In most cases is the Markov Condition

violated only for the distribution of the

observed variables → more a violation of

Causal Sufficiency



Causal Markov Condition

The Markov Condition holds for most systems, some arguable exeptions

(plato.stanford.edu):

For example, also if time series are

aggregated X

Y

Z
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Causal Markov Condition

Spirtes, P., C. Glymour, and R. Scheines. 2000. Causation, Prediction,

and Search:

The basis for the Causal Markov Condition is, first, that it is necessarily

true of populations of structurally alike pseudo-indeterministic systems

whose exogenous variables are distributed independently, and second, it is

supported by almost all of our experience with systems that can be put

through repetitive processes and whose fundamental propensities can be

tested. Any persuasive case against the Condition would have to exhibit

macroscopic systems for which it fails and give some powerful reason why

we should think the macroscopic natural and social systems for which we

wish causal explanations also fail to satisfy the condition. It seems to us

that no such case has been made.
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Faithfulness Condition

Definition: The joint distribution P(X) is faithful to G iff every

conditional independence relation true in P(X) is entailed by the Causal

Markov Condition applied to G.

Theorem: Faithfulness holds iff for all disjoint subsets X i , X j , S ,

X i ⊥⊥ X j | S =⇒ X i ./ X j | S (2)

X i
��./ X j | S =⇒ X i

��⊥⊥X j | S (contraposition)

Conditional independence implies separation and connectedness implies

dependence.

• Faithfulness is violated if we observe a statistical independence

relation that are not entailed by the Markov condition



Faithfulness Violations

Counteracting mechanisms: For c = −ab
we have X ⊥⊥ Y even though they are

connected in the graph:

X = ηX

Z = aX + ηY (3)

Y = bZ + cX + ηZ .

In linear models coefficient values form real

space and the set of points in this space

that create vanishing partial correlations not

implied by the Causal Markov Condition

have Lebesgue measure zero

But: For finite sample sizes such cases may

be more common!

X

Z

Y
c

b
a
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Faithfulness Violations

Determinism: Here we have

I (X ;Y |Z ) = I (f (Z );Y |Z ) = 0 (since

H(f (Z )|Z ) = 0) implying X ⊥⊥ Y | Z even

though Y depends on X in the model:

Z = ηZ

X = f (Z )

Y = h(X ) + ηY

One can argue that the complexity of the

underlying processes will almost always

imply that variables do not deterministically

depend on their parents, but some

unresolved processes constitute ‘intrinsic’ or

‘dynamical’ noise.

X

Z

Y

f(Z)
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Faithfulness Violations

Purely non-pairwise dependencies:

Here I (X ;Y ) = I (Z ;Y ) = 0 even though

both are connected to Y :

Y = X ⊕ Z + ηY

X ,Z binary random variables with

P(X = 0, 1) = P(Z = 0, 1) = 0.5

But if P(X ) 6= P(Z ), Faithfulness is not

violated anymore! Another way out:

Hypergraphs.

X

Z

Y
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Faithfulness Violations

→ Non-faithful distributions arise

from a pathological fine-tuning of

dependence parameters

But (plato.stanford.edu):

• ’no fine-tuning’ condition seems

implausible as a metaphysical or

conceptual constraint upon the

connection between causation and

probabilities (e.g., genes suppress each

other)

• Faithfulness is a methodological

principle rather than a metaphysical

principle: it is preferable to postulate a

causal structure that implies the

independencies rather than one that is

merely consistent with independence

X

Z

Y

?
X

Z

Y
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Causal cycles

• Here we assume directed acyclic graphs

(DAGs) as underlying causal structure

• Cycles can often be resolved in

time-series graphs

• One can argue that since the speed of

light is finite, effects cannot cause

causes and hence causal graphs among

time-resolved variables are always

acyclic

• But what if cannot resolve time? One

can think of causal graphs for systems

in equilibrium and use the equilibrium

distribution for causal discovery

• Difficult topic not further discussed

here

X3
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Selection bias



Selection bias

→ covered in next lecture



Further assumptions for time

series graphs



Further assumptions for time series graphs

• Time order

• No contemporaneous effects: Then

causal graphs can be efficiently

estimated using simplifications

→ lecture on PCMCI and Granger

Causality

• Stationarity
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Stationarity

Definition: The time series process Xt with graph(s) Gt is called causally

stationary over a time index set T iff Gt = Gs for all t, s ∈ T .

Weaker form than the common definition of stationarity in mean,

variance, spectral properties, or of the value of individual coefficients in a

linear model.
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Assumptions on dependencies and distributions

• Conditional-independence alone can

only recover causal structures up to a

Markov equivalence class

• Especially useless for problems with

just two variables

X2X1 X3
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Assumptions on dependencies and distributions

• Conditional-independence alone can

only recover causal structures up to a

Markov equivalence class

• Especially useless for problems with

just two variables
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Assumptions on dependencies and distributions

• Causal inference can also utilize

assumptions on dependencies and

distributions: E.g., linear additive

models with non-gaussian noise:

• Regression of Y on X yields residual

rY . Suppose we measure that rY and

X are uncorrelated, but rX and Y are

correlated

• Exploit the conditional independence

constraints on the graph including error

terms (as estimated from regression)

• Asymmetry allows to conclude on

causal direction

• Covered in lecture on Structural Causal

Models

X Y
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Muñoz-Maŕı, J., van Nes, E. H., Peters, J., Quax, R., Reichstein, M.,

Scheffer, M., Schölkopf, B., Spirtes, P., Sugihara, G., Sun, J.,

Zhang, K., and Zscheischler, J. (2019a).

Inferring causation from time series in earth system sciences.

Nature Communications, 10(1):2553.

Runge, J., Donner, R. V., and Kurths, J. (2015a).

Optimal model-free prediction from multivariate time series.

Physical Review E, 91(5):052909.



References x

Runge, J., Heitzig, J., Marwan, N., and Kurths, J. (2012a).

Quantifying causal coupling strength: A lag-specific measure

for multivariate time series related to transfer entropy.

Physical Review E, 86(6):061121.

Runge, J., Heitzig, J., Petoukhov, V., and Kurths, J. (2012b).

Escaping the Curse of Dimensionality in Estimating

Multivariate Transfer Entropy.

Phys. Rev. Lett., 108(25):258701.

Runge, J., Nowack, P., Kretschmer, M., Flaxman, S., and Sejdinovic,

D. (2019b).

Detecting and quantifying causal associations in large

nonlinear time series datasets.

Science Advances, eaau4996(5).



References xi

Runge, J., Petoukhov, V., Donges, J. F., Hlinka, J., Jajcay, N.,

Vejmelka, M., Hartman, D., Marwan, N., Paluš, M., and Kurths, J.
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