2nd Working Group: Learning dynamics from partial and noisy observation with the help of Data Assimilation – Arthur Filoche

11 December, 10 o’clock, Salle de réunion SCAI, Jussieu.
Batiment Esclangon 1er étage

Participer à la réunion Zoom
https://us02web.zoom.us/j/89174956656

Geosciences have long-standing experience in modeling, forecasting, or estimating complex dynamical systems like the atmosphere or the ocean. Most of these models came from physical laws and are described by PDE. Usually, sparse and noisy observations of such systems are available. The first need to produce a forecast is to estimate initial conditions. This is usually done via Data Assimilation (DA), a set of methods that optimally combines a dynamical model and observations, focusing on system state estimation. In variational formalism, it’s a PDE-constrained optimization problem that requires adjoint modeling to calculate gradients. This field is very close to Machine Learning (ML) in the sense that both learn from data.

ML algorithms have demonstrated impressive results of spatiotemporal forecasting, but to do so it needs dense data which is rarely the case in earth sciences. Also, tools provided by the deep learning community based on automatic differentiation are particularly suitable for variational DA, avoiding explicit adjoint modeling.

What motivates this discussion is that physics-based model is often
incomplete and machine learning can provide a learnable class of model
while data assimilation can provide dense data.

Groupe de travail 1 : Evangelos Moscos

Quand : 4 Décembre 2019 à 14:00

Où : Salle de réunion du LOCEAN, Tour 45-55, 4ème étage

Evangelos Moscos (LMD,LIP6) présentera sa problématique de recherche qui porte sur « Identification de structures tourbillonnaires dans la Méditerranée par Deep Learning ». Le sujet aborde des problèmes méthodologiques liés à la détection de structures à différentes échelles qui se retrouvent dans de nombreux problèmes.

 L’exposé sera suivi d’une discussion avec les participants sur l’approche et les perspectives possibles du travail.

 Le groupe de travail interne « SCAI & AI4Climate » réunit les chercheurs, ingénieurs, doctorants, post doctorants concernés par les thématiques liées à conception et l’utilisation de nouvelles méthodes d’Intelligence Artificielle pour l’étude de l’environnement, allant du modèle à l’observation. Les premières réunions seront consacrées aux travaux des doctorants qui commencent leur thèse cette année dans ce cadre.