Power-efficient deep learning algorithms – Sébastien Loustau

Link for the slides

Next seminar is on October 14th October (14:30) in « Campus Pierre & Marie Curie » of Sorbonne University. It will take place in SCAI seminar room, building « Esclangon », 1st floor

Si vous souhaitez assister en personne à ce séminaire:

Sébastien présentera ses travaux à la salle de séminaire de SCAI (plan d’accès: https://ai4climate.lip6.fr/wp-content/uploads/2020/09/plan_SCAI_extrait.pdf)
Merci de vous inscrire sur ce lien : https://docs.google.com/forms/d/e/1FAIpQLSc4scBTJZnOquz2FZkQbPKAKEvacQ0BC52WKs52CzTD6amCAw/viewform?usp=sf_link
Nous vous conseillons néanmoins d’apporter avec vous votre ordinateur portable afin d’être connecté en même temps sur la salle zoom (voir ci-dessous)


Si vous souhaitez assister à distance: 

Voici le lien zoom: https://us02web.zoom.us/j/81893439500
Vous pourrez également poser des questions sur le chat qui seront retransmises dans la salle.

Sebastien Loustau presentation is entitled:

« Power-efficient deep learning algorithms»

Abstract:
In this talk, I will present both theoretical and practical aspect of how designing power-efficient deep learning algorithms. After a non-exhaustive survey of different contributions about the machine learning perspective (training low bit-width networks), the hardware counterpart (CNNs accelerators) and the relationship with Auto-ML and the NAS procedure, I will present a theoretically based approach to add the power efficiency constraint into the optimization procedure of training deep nets. This work in progress bridges optimal transport and information theory with online learning.

Short bio:
Sébastien is a researcher in mathematical statistics and Machine Learning. He has studied the theoretical aspect of both statistical and online learning. His research interests include online learning, unsupervised learning, adaptive algorithms and minimax theory. He also founded LumenAI 5 years ago.